
PypeIt Documentation
Release 0.11.1dev

Cooke, Prochaska, and Associates

Sep 29, 2019

Contents

1 Getting Started 3

2 Running PypeIt 7

3 Data Products 49

4 Calibrations 63

5 Instruments 79

6 Object Algorithms 83

7 Documentation 91

8 For Developers 97

9 Contents 107

10 Indices and tables 111

Index 113

i

ii

PypeIt Documentation, Release 0.11.1dev

PypeIt is a Python based data reduction pipeline (DRP) written oringinally for echelle spectroscopy and since expanded
to low-resolution spectrometers. This documentation details the code, how to run it, and what it produces.

Contents 1

PypeIt Documentation, Release 0.11.1dev

2 Contents

CHAPTER 1

Getting Started

1.1 Installing PypeIt

This document will describe how to install PypeIt.

1.1.1 Installing Dependencies

Though we have tried to keep the number of dependencies low, there are a few packages that need to be installed
(various python packages and linetools).

In general, we recommend that you use Anaconda for the majority of these installations.

Detailed installation instructions are presented below:

Python Dependencies

PypeIt depends on the following list of Python packages.

We recommend that you use Anaconda to install and/or update these packages.

• python version 3.6 or later

• numpy version 1.15.4 or later

• astropy version 3.1 or later

• scipy version 1.1 or later

• matplotlib version 3.0 or later

• numba version 0.39.0 or later (optional - some speed ups, inc. wavecal)

• PyQT5 version 5 (needed for linetools)

• h5py version 2.7 (for data I/O)

• yaml – You may need to install pyyaml

3

https://www.continuum.io/downloads/
http://www.python.org/
http://www.numpy.org/
http://www.astropy.org/
http://www.scipy.org/
http://matplotlib.org/
https://numba.pydata.org/
https://wiki.python.org/moin/PyQt/
https://www.h5py.org/

PypeIt Documentation, Release 0.11.1dev

• configobj – version 5.0.6 or later

• scikit-learn – version 0.20 or later

• IPython – version 7.2.0 or later

If you are using Anaconda, you can check the presence of these packages with:

conda list "^python$|numpy|astropy$|scipy$|matplotlib|numba|PyQT|ginga|yaml|h5py"

If the packages have been installed, this command should print out all the packages and their version numbers.

If any of the packages are out of date, they can be updated with a command like:

conda update scipy

The following packages need to be installed by cloning from GitHub:

• ginga JXP’s fork of Ginga

• linetools Linetools is a package designed for the analysis of 1-D spectra.

Do not use pip install for these.

To remind you, install via GitHub with a sequence like:

git clone https://github.com/profxj/ginga
cd ginga
python setup.py install

This will push the code into your Python distribution.

1.1.2 Installing PypeIt

We recommend that you install PypeIt with pip:

pip install pypeit

Nuff said. If you have not yet satisfied all the requirements, PypeIt will fail when you first attempt to run it. You can
grab all of them (except ginga) by doing:

pip install -r path/requirements.txt

where path is to wherever pip installed the code. Or you can download the requirements.txt file and run on it directly.

1.1.3 Tests

In order to assess whether PypeIt has been properly installed, we suggest you run the following tests:

1. Ensure run_pypeit works

Go to a directory outside of the PypeIt directory (e.g. your home directory), then type run_pypeit.:

cd
run_pypeit -h

4 Chapter 1. Getting Started

https://pypi.org/project/configobj/
https://scikit-learn.org/stable/
https://ipython.org
https://github.com/profxj/ginga
https://github.com/linetools/linetools/
https://github.com/pypeit/PypeIt/blob/master/pypeit/requirements.txt

PypeIt Documentation, Release 0.11.1dev

2. Run the PypeIt unit tests

If you cloned the Repo (i.e., not PyPI), then you can run the standard tests by doing:

python setup.py test

3. Try the test suite – ONLY FOR DEVELOPERS

Ask for help if you really want to do this.

We have provided a suite of tests that you can download and run via this Repo: TestSuite

It can be installed as follows:

we suggest installing this in the directory above PypeIt
git clone https://github.com/pypeit/PypeIt-development-suite.git

To run the test:

cd PypeIt-development-suite
./pypeit_test all

Note: pypeit_test can also take the argument kast instead of all.

The test takes a while to run but should run without issue if all the packages have been properly installed.

1.1.4 PIP

For the developers, see pyp_twine for details on how to push a new build to PyPI.

1.2 Code Flow

This describes the standard code flow of PypeIt.

1.2.1 ARMS

Multi-slit and longslit reductions.

1.2. Code Flow 5

https://github.com/pypeit/PypeIt-development-suite

PypeIt Documentation, Release 0.11.1dev

Step Class/module Internals Outputs QA
Setup PypeItSetup fitstbl keck_lris_red_setup_A.fits

setup_dict setup_files/keck_lris_red_2018-Jun-
19.setups
keck_lris_red_setup_A.pypeit

Bias BiasFrame msbias MasterBias_A_02_aa.fits
ArcImg ArcImage msarc MasterArc_A_02_aa.fits
Bad Pixel
Mask

BPMImage msbpm

Pixel loca-
tion

— pixlocn

Trace Slits TraceSlit tslits_dict MasterTrace_A_02_aa.fits.gz Slit_Trace_A_02_aa.png
MasterTrace_A_02_aa.json

1D Wave
Calib

WaveCalib wv_calib MasterWaveCalib_A_02_aa.json Arc_1dfit_A_02_aa_S0000.png

Wave Tilts WaveTilts mstilts MasterTilts_A_02_aa.fits Arc_tilts_A_02_aa_S0000.png
Pixel flat FlatField mspixflat-

nrm
MasterFlatField_A_02_aa.fits

Process Sci-
ence

ScienceIm-
age

sciframe spec2d_basename.fits

Global
skysub

ScienceIm-
age

global_sky

Find objects ScienceIm-
age

tracelist

Extraction ScienceIm-
age

specobjs

Flexure arflex flex_list basename_flex_sky.png
basename_flex_corr.png

Heliocentric arwave velcorr
Flux FlexSpec sensfunc spec1d_basename.fits

6 Chapter 1. Getting Started

CHAPTER 2

Running PypeIt

PYPEIT HOWTO

2.1 PypeIt Parameters

PypeIt allows you to customize its execution without having to change the code directly.

Although not ubiquitous, most optional arguments of PypeIt’s algorithms are contained within the pypeit.par.
pypeitpar.PypeItPar superset. See the Current PypeItPar Parameter Hierarchy below for the current structure
of a pypeit.par.pypeitpar.PypeItPar instance.

More importantly, each instrument served provides its own default values for pypeit.par.pypeitpar.
PypeItPar as defined by its default_pypeit_par method; e.g., pypeit.spectrographs.shane_kast.
ShaneKastSpectrograph.default_pypeit_par(). Users can alter these parameters via the PypeIt file,
see PypeIt Reduction File. Only those parameters that the user wishes to be different from the default used for their
specified instrument need to be includes in the PypeIt file.

PypeIt uses the configobj class to parse the user supplied arguments. The syntax is important and the nesting of the pa-
rameter changes must match the Current PypeItPar Parameter Hierarchy. Examples of ‘How to change parameters
using the PypeIt file‘_ are given below.

2.1.1 Current PypeItPar Parameter Hierarchy

PypeItPar Keywords

[rdx]: ReducePar Keywords

[calibrations]: CalibrationsPar Keywords

[[biasframe]]: FrameGroupPar Keywords

[[[process]]]: ProcessImagesPar Keywords

[[darkframe]]: FrameGroupPar Keywords

7

https://tinyurl.com/pypeit-howto
http://configobj.readthedocs.io/en/latest/

PypeIt Documentation, Release 0.11.1dev

[[[process]]]: ProcessImagesPar Keywords

[[arcframe]]: FrameGroupPar Keywords

[[[process]]]: ProcessImagesPar Keywords

[[tiltframe]]: FrameGroupPar Keywords

[[[process]]]: ProcessImagesPar Keywords

[[pixelflatframe]]: FrameGroupPar Keywords

[[[process]]]: ProcessImagesPar Keywords

[[pinholeframe]]: FrameGroupPar Keywords

[[[process]]]: ProcessImagesPar Keywords

[[traceframe]]: FrameGroupPar Keywords

[[[process]]]: ProcessImagesPar Keywords

[[standardframe]]: FrameGroupPar Keywords

[[[process]]]: ProcessImagesPar Keywords

[[flatfield]]: FlatFieldPar Keywords

[[wavelengths]]: WavelengthSolutionPar Keywords

[[slits]]: TraceSlitsPar Keywords

[[tilts]]: WaveTiltsPar Keywords

[scienceframe]: FrameGroupPar Keywords

[[process]]: ProcessImagesPar Keywords

[scienceimage]: ScienceImagePar Keywords

[flexure]: FlexurePar Keywords

[fluxcalib]: FluxCalibrationPar Keywords

PypeItPar Keywords

Class Instantiation: pypeit.par.pypeitpar.PypeItPar

8 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

Key Type Op-
tions

De-
fault

Description

rdx pypeit.
par.
pypeitpar.
ReducePar

Redu-
cePar
Key-
words

PypIt reduction rules.

calibrationspypeit.
par.
pypeitpar.
CalibrationsPar

Cal-
ibra-
tionsPar
Key-
words

Parameters for the calibration algorithms

scienceframepypeit.
par.
pypeitpar.
FrameGroupPar

FrameGroup-
Par
Key-
words

The frames and combination rules for the science observations

scienceimagepypeit.
par.
pypeitpar.
ScienceImagePar

Scien-
ceIm-
agePar
Key-
words

Parameters determining sky-subtraction, object finding, and extraction

flexurepypeit.
par.
pypeitpar.
FlexurePar

Flex-
urePar
Key-
words

Parameters used by the flexure-correction procedure. Flexure correc-
tions are not performed by default. To turn on, either set the parameters
in the ‘flexure’ parameter group or set ‘flexure = True’ in the ‘rdx’ pa-
rameter group to use the default flexure-correction parameters.

fluxcalibpypeit.
par.
pypeitpar.
FluxCalibrationPar

Flux-
Cal-
ibra-
tionPar
Key-
words

Parameters used by the flux-calibration procedure. Flux calibration is
not performed by default. To turn on, either set the parameters in the
‘fluxcalib’ parameter group or set ‘fluxcalib = True’ in the ‘rdx’ param-
eter group to use the default flux-calibration parameters.

ReducePar Keywords

Class Instantiation: pypeit.par.pypeitpar.ReducePar

2.1. PypeIt Parameters 9

PypeIt Documentation, Release 0.11.1dev

Key Type Options De-
fault

Description

spectrographstr gemini_gnirs, keck_deimos,
keck_lris_blue, keck_lris_red,
keck_lris_red_longonly,
keck_nires, keck_hires_red,
keck_hires_blue, mmt_binospec,
keck_nirspec_low,
shane_kast_blue, shane_kast_red,
shane_kast_red_ret, tng_dolores,
wht_isis_blue, vlt_xshooter_uvb,
vlt_xshooter_vis, magellan_fire,
magellan_mage, vlt_xshooter_nir,
gemini_gmos_south_ham,
gemini_gmos_north_e2v,
gemini_gmos_north_ham,
lbt_mods1r, lbt_mods1b, lbt_mods2r,
lbt_mods2b, vlt_fors2

Spectrograph that provided the
data to be reduced. Options
are: gemini_gnirs, keck_deimos,
keck_lris_blue, keck_lris_red,
keck_lris_red_longonly, keck_nires,
keck_hires_red, keck_hires_blue,
mmt_binospec, keck_nirspec_low,
shane_kast_blue, shane_kast_red,
shane_kast_red_ret, tng_dolores,
wht_isis_blue, vlt_xshooter_uvb,
vlt_xshooter_vis, magellan_fire,
magellan_mage, vlt_xshooter_nir,
gemini_gmos_south_ham, gem-
ini_gmos_north_e2v, gem-
ini_gmos_north_ham, lbt_mods1r,
lbt_mods1b, lbt_mods2r, lbt_mods2b,
vlt_fors2

detnumint,
list

Restrict reduction to a list of detector in-
dices

sortrootstr A filename given to output the details of
the sorted files. If None, the default is the
root name of the pypeit file. If off, no out-
put is produced.

calwinint,
float

0 The window of time in hours to search for
calibration frames for a science frame

scidirstr ScienceDirectory relative to calling directory to
write science files.

qadirstr QA Directory relative to calling directory to
write quality assessment files.

redux_pathstr /
Users/
westfall/
Work/
packages/
pypeit/
doc

Path to folder for performing reductions.

ignore_bad_headersbool False Ignore bad headers (NOT recommended
unless you know it is safe).

CalibrationsPar Keywords

Class Instantiation: pypeit.par.pypeitpar.CalibrationsPar

10 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

Key Type Op-
tions

Default Description

caldir str Masters Directory relative to calling directory to write master files.
setup str If masters=’force’, this is the setup name to be used: e.g.,

C_02_aa . The detector number is ignored but the other
information must match the Master Frames in the master
frame folder.

trim bool True Trim the frame to isolate the data
badpix bool True Make a bad pixel mask? Bias frames must be provided.
biasframepypeit.par.

pypeitpar.
FrameGroupPar

FrameGroup-
Par Key-
words

The frames and combination rules for the bias correction

darkframepypeit.par.
pypeitpar.
FrameGroupPar

FrameGroup-
Par Key-
words

The frames and combination rules for the dark-current cor-
rection

arcframepypeit.par.
pypeitpar.
FrameGroupPar

FrameGroup-
Par Key-
words

The frames and combination rules for the wavelength cali-
bration

tiltframepypeit.par.
pypeitpar.
FrameGroupPar

FrameGroup-
Par Key-
words

The frames and combination rules for the wavelength tilts

pixelflatframepypeit.par.
pypeitpar.
FrameGroupPar

FrameGroup-
Par Key-
words

The frames and combination rules for the field flattening

pinholeframepypeit.par.
pypeitpar.
FrameGroupPar

FrameGroup-
Par Key-
words

The frames and combination rules for the pinholes

traceframepypeit.par.
pypeitpar.
FrameGroupPar

FrameGroup-
Par Key-
words

The frames and combination rules for images used for slit
tracing

standardframepypeit.par.
pypeitpar.
FrameGroupPar

FrameGroup-
Par Key-
words

The frames and combination rules for the spectrophotomet-
ric standard observations

flatfieldpypeit.par.
pypeitpar.
FlatFieldPar

Flat-
FieldPar
Keywords

Parameters used to set the flat-field procedure

wavelengthspypeit.par.
pypeitpar.
WavelengthSolutionPar

Wave-
lengthSo-
lutionPar
Keywords

Parameters used to derive the wavelength solution

slits pypeit.par.
pypeitpar.
TraceSlitsPar

TraceS-
litsPar
Keywords

Define how the slits should be traced using the trace ?PIN-
HOLE? frames

tilts pypeit.par.
pypeitpar.
WaveTiltsPar

WaveTiltsPar
Keywords

Define how to tract the slit tilts using the trace frames

FlatFieldPar Keywords

Class Instantiation: pypeit.par.pypeitpar.FlatFieldPar

2.1. PypeIt Parameters 11

PypeIt Documentation, Release 0.11.1dev

Key Type Op-
tions

De-
fault

Description

method str bspline,
skip

bsplineMethod used to flat field the data; use skip to skip flat-fielding. Options are:
None, bspline, skip

frame str pixelflatFrame to use for field flattening. Options are: “pixelflat”, or a specified cali-
bration filename.

illumflattenbool True Use the flat field to determine the illumination profile of each slit.
spec_samp_fineint,

float
1.2 bspline break point spacing in units of pixels for spectral fit to flat field blaze

function.
spec_samp_coarseint,

float
50.0 bspline break point spacing in units of pixels for 2-d bspline-polynomial fit to

flat field image residuals. This should be a large number unless you are trying
to fit a sky flat with lots of narrow spectral features.

spat_sampint,
float

5.0 Spatial sampling for slit illumination function. This is the width of the median
filter in pixels used to determine the slit illumination function, and thus sets the
minimum scale on which the illumination function will have features.

tweak_slitsbool True Use the illumination flat field to tweak the slit edges. This will work even if
illumflatten is set to False

tweak_slits_threshfloat 0.93 If tweak_slits is True, this sets the illumination function threshold used to tweak
the slit boundaries based on the illumination flat. It should be a number less
than 1.0

tweak_slits_maxfracfloat 0.1 If tweak_slit is True, this sets the maximum fractional amount (of a slits width)
allowed for trimming each (i.e. left and right) slit boundary, i.e. the default is
10% which means slits would shrink or grow by at most 20% (10% on each
side)

WavelengthSolutionPar Keywords

Class Instantiation: pypeit.par.pypeitpar.WavelengthSolutionPar

Key Type Options Default Description
reference str arc, sky, pixel arc Perform wavelength calibration with an arc, sky frame. Use ‘pixel’ for no wavelength solution.
method str simple, semi-brute, basic, holy-grail, reidentify, full_template holy-grail Method to use to fit the individual arc lines. Most of these methods are now deprecated as they fail most of the time without significant parameter tweaking. ‘holy-grail’ attempts to get a first guess at line IDs by looking for patterns in the line locations. It is fully automated and works really well excpet for when it does not’reidentify’ is now the preferred method, however it requires that an archive of wavelength solution has been constructed for your instrument/grating combination Options are: simple, semi-brute, basic, holy-grail, reidentify, full_template
echelle bool False Is this an echelle spectrograph? If yes an additional 2-d fit wavelength fit will be performed as a function of spectral pixel and order number to improve the wavelength solution
ech_fix_format bool True Is this a fixed format echelle like ESI, X-SHOOTER, or NIRES. If so reidentification will assume that each order in the data is aligned with a single order in the reid arxiv
ech_nspec_coeff int 4 For echelle spectrographs, order of the final 2d fit to the spectral dimension. You should choose this to be the n_final of the fits to the individual orders.
ech_norder_coeff int 4 For echelle spectrographs, order of the final 2d fit to the order dimension.
ech_sigrej int, float 2.0 For echelle spectrographs sigma clipping rejection threshold in 2d fit to spectral and order dimensions
lamps list Name of one or more ions used for the wavelength calibration. Use None for no calibration. Options are: ArI, CdI, HgI, HeI, KrI, NeI, XeI, ZnI, ThAr
nonlinear_counts float 10000000000.0 Arc lines above this saturation threshold are not used in wavelength solution fits because they cannotbe accurately centroided
sigdetect int, float, list, ndarray 5.0 Detection threshold for arc lines. This can be a single number or a list/array providing the value for each slit
fwhm int, float 4.0 Spectral sampling of the arc lines. This is the FWHM of an arcline in unbinned pixels.
reid_arxiv str Name of the archival wavelength solution file that will be used for the wavelength reidentification if the wavelength solution method = reidentify
nreid_min int 1 Minimum number of times that a given candidate reidentified line must be properly matched with a line in the arxiv to be considered a good reidentification. If there is a lot of duplication in the arxiv of the spectra in question (i.e. multislit) set this to a number like 1-4. For echelle this depends on the number of solutions in the arxiv. For fixed format echelle (ESI, X-SHOOTER, NIRES) set this 1. For an echelle with a tiltable grating, it will depend on the number of solutions in the arxiv.
cc_thresh float, list, ndarray 0.7 Threshold for the global cross-correlation coefficient between an input spectrum and member of the archive required to attempt reidentification. Spectra from the archive with a lower cross-correlation are not used for reidentification. This can be a single number or a list/array providing the value for each slit
cc_local_thresh float 0.7 Threshold for the local cross-correlation coefficient, evaluated at each reidentified line, between an input spectrum and the shifted and stretched archive spectrum above which a line must be to be considered a good line for reidentification. The local cross-correlation is evaluated at each candidate reidentified line (using a window of nlocal_cc), and is then used to score the the reidentified lines to arrive at the final set of good reidentifications
nlocal_cc int 11 Size of pixel window used for local cross-correlation computation for each arc line. If not an odd number one will be added to it to make it odd.
rms_threshold float, list, ndarray 0.15 Minimum RMS for keeping a slit/order solution. This can be a single number or a list/array providing the value for each slit
match_toler float 2.0 Matching tolerance in pixels when searching for new lines. This is the difference in pixels between the wavlength assigned to an arc line by an iteration of the wavelength solution to the wavelength in the line list. This parameter is also used as the matching tolerance in pixels for a line reidentification. A good line match must match within this tolerance to the shifted and stretched archive spectrum, and the archive wavelength solution at this match must be within match_toler dispersion elements from the line in line list.

Continued on next page

12 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

Table 1 – continued from previous page
Key Type Options Default Description
func str legendre Function used for wavelength solution fits
n_first int 2 Order of first guess fit to the wavelength solution.
n_final int, float, list, ndarray 4 Order of final fit to the wavelength solution. This can be a single number or a list/array providing the value for each slit
sigrej_first float 2.0 Number of sigma for rejection for the first guess to the wavelength solution.
sigrej_final float 3.0 Number of sigma for rejection for the final guess to the wavelength solution.
wv_cen float 0.0 Central wavelength. Backwards compatibility with basic and semi-brute algorithms.
disp float 0.0 Dispersion. Backwards compatibility with basic and semi-brute algorithms.
numsearch int 20 Number of brightest arc lines to search for in preliminary identification
nfitpix int 5 Number of pixels to fit when deriving the centroid of the arc lines (an odd number is best)
IDpixels int, float, list One or more pixels at which to manually identify a line
IDwaves int, float, list Wavelengths of the manually identified lines
medium str vacuum, air vacuum Medium used when wavelength calibrating the data. Options are: vacuum, air
frame str observed, heliocentric, barycentric heliocentric Frame of reference for the wavelength calibration. Options are: observed, heliocentric, barycentric
nsnippet int 2 Number of spectra to chop the arc spectrum into when using the full_template method

TraceSlitsPar Keywords

Class Instantiation: pypeit.par.pypeitpar.TraceSlitsPar

2.1. PypeIt Parameters 13

PypeIt Documentation, Release 0.11.1dev

Key Type Op-
tions

De-
fault

Description

functionstr polynomial,
legendre,
chebyshev

legendreFunction use to trace the slit center. Options are: polynomial, legendre, chebyshev

medrepint 0 Median-smoothing iterations to perform on sqrt(trace) image before applying to
Sobel filter, which detects slit/order edges.

numberint -1 Manually set the number of slits to identify (>=1). ‘auto’ or -1 will automatically
identify the number of slits.

trim tu-
ple

0, 0 How much to trim off each edge of each slit. Each number should be 0 or positive

maxgapint Maximum number of pixels to allow for the gap between slits. Use None if the
neighbouring slits are far apart or of similar illumination.

maxshiftint,
float

0.15 Maximum shift in trace crude. Use a larger number for more curved slits/orders.

pad int 0 Integer number of pixels to consider beyond the slit edges.
sigdetectint,

float
20.0 Sigma detection threshold for edge detection

min_slit_widthfloat 6.0 If a slit spans less than this number of arcseconds over the spatial direction of the
detector, it will be ignored. Use this option to prevent the alignment (box) slits
from multislit reductions, which typically cannot be reduced without a significant
struggle.

add_slitsstr,
list

Add one or more user-defined slits. The syntax to define a slit to
add is: ‘det:spec:spat_left:spat_right’ where det=detector, spec=spectral pixel,
spat_left=spatial pixel of left slit boundary, and spat_righ=spatial pixel of right
slit boundary. For example, ‘2:2000:2121:2322,3:2000:1201:1500’ will add a slit
to detector 2 passing through spec=2000 extending spatially from 2121 to 2322
and another on detector 3 at spec=2000 extending from 1201 to 1500.

rm_slitsstr,
list

Remove one or more user-specified slits. The syntax used to define a slit to
remove is: ‘det:spec:spat’ where det=detector, spec=spectral pixel, spat=spatial
pixel. For example, ‘2:2000:2121,3:2000:1500’ will remove the slit on detector 2
that contains pixel (spat,spec)=(2000,2121) and on detector 3 that contains pixel
(2000,2121).

diffpolyorderint 2 Order of the 2D function used to fit the 2d solution for the spatial size of all orders.
singlelist [] Add a single, user-defined slit based on its location on each detector. Syntax is a

list of values, 2 per detector, that define the slit according to column values. The
second value (for the right edge) must be greater than 0 to be applied. LRISr
example: setting single = -1, -1, 7, 295 means the code will skip the user-definition
for the first detector but adds one for the second. None means no user-level slits
defined.

sobel_modestr nearest,
constant

nearestMode for Sobel filtering. Default is ‘nearest’ but the developers find ‘constant’
works best for DEIMOS.

pcaextraplist 0, 0 The number of extra orders to predict in the negative (first number) and positive
(second number) direction. Must be two numbers in the list and they must be
integers.

smash_rangelist 0.0,
1.0

Range of the slit in the spectral direction (in fractional units) to smash when search-
ing for slit edges. If the spectrum covers only a portion of the image, use that range.

trace_npolyint 5 Order of legendre polynomial fits to slit/order boundary traces.
mask_frac_threshfloat 0.6 Minimum fraction of the slit edge that was not masked to use in initial PCA.

14 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

WaveTiltsPar Keywords

Class Instantiation: pypeit.par.pypeitpar.WaveTiltsPar

Key Type Op-
tions

De-
fault

Description

idsonlybool False Only use the arc lines that have an identified wavelength to trace tilts
tracethreshint,

float,
list,
ndar-
ray

20.0 Significance threshold for arcs to be used in tracing wavelength tilts. This can be a
single number or a list/array providing the value for each slit

sig_neighint,
float

10.0 Significance threshold for arcs to be used in line identification for the purpose of iden-
tifying neighboring lines.The tracethresh parameter above determines the significance
threshold of lines that will be traced, but these lines must be at least nfwhm_neigh fwhm
away from neighboring lines. This parameter determines the significance above which
a line must be to be considered a possible colliding neighbor. A low value of sig_neigh
will result in an overall larger number of lines, which will result in more lines above
tracethresh getting rejected

nfwhm_neighint,
float

3.0 Required separation between neighboring arc lines for them to be considered for tilt
tracing in units of the the spectral fwhm (see wavelength parset where fwhm is defined)

maxdev_tracefitint,
float

0.2 Maximum absolute deviation (in units of fwhm) for the legendre polynomial fits to
individual arc line tilt fits during iterative trace fitting (flux weighted, then gaussian
weighted)

sigrej_traceint,
float

3.0 Outlier rejection significance to determine which traced arc lines should be included in
the global fit

spat_orderint,
float,
list,
ndar-
ray

3 Order of the legendre polynomial to be fit to the the tilt of an arc line. This parameter
determinesboth the orer of the individual arc line tilts, as well as the order of the spatial
direction of the2d legendre polynomial (spatial, spectral) that is fit to obtain a global
solution for the tilts across theslit/order. This can be a single number or a list/array
providing the value for each slit

spec_orderint,
float,
list,
ndar-
ray

4 Order of the spectral direction of the 2d legendre polynomial (spatial, spectral) that is fit
to obtain a global solution for the tilts across the slit/order. This can be a single number
or a list/array providing the value for each slit

func2dstr legendre2dType of function for 2D fit
maxdev2dint,

float
0.25 Maximum absolute deviation (in units of fwhm) rejection threshold used to determines

which pixels in global 2d fits to arc line tilts are rejected because they deviate from the
model by more than this value

sigrej2dint,
float

3.0 Outlier rejection significance determining which pixels on a fit to an arc line tilt are
rejected by the global 2D fit

FrameGroupPar Keywords

Class Instantiation: pypeit.par.pypeitpar.FrameGroupPar

2.1. PypeIt Parameters 15

PypeIt Documentation, Release 0.11.1dev

Key Type Options De-
fault

Description

frametypestr pinhole,
arc, dark,
pixelflat,
standard, tilt,
bias, trace,
science

scienceFrame type. Options are: pinhole, arc, dark, pixelflat, stan-
dard, tilt, bias, trace, science

useframestr scienceA master calibrations file to use if it exists.
numberint 0 Used in matching calibration frames to science frames.

This sets the number of frames to use of this type
exprnglist None,

None
Used in identifying frames of this type. This sets the min-
imum and maximum allowed exposure times. There must
be two items in the list. Use None to indicate no limit; i.e.,
to select exposures with any time greater than 30 sec, use
exprng = [30, None].

processpypeit.
par.
pypeitpar.
ProcessImagesPar

Pro-
ces-
sIm-
ages-
Par
Key-
words

Parameters used for basic image processing

ProcessImagesPar Keywords

Class Instantiation: pypeit.par.pypeitpar.ProcessImagesPar

16 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

Key Type Options De-
fault

Description

overscanstr polynomial,
savgol,
median, none

savgolMethod used to fit the overscan. Options are: polynomial, savgol,
median, none

overscan_parint,
list

5, 65 Parameters for the overscan subtraction. For ‘polynomial’, set over-
can_par = order, number of pixels, number of repeats ; for ‘savgol’, set
overscan_par = order, window size ; for ‘median’, set overscan_par =
None or omit the keyword.

match int,
float

-1 (Deprecate?) Match frames with pixel counts that are within N-sigma
of one another, where match=N below. If N < 0, nothing is matched.

combinestr mean, median,
weightmean

weightmeanMethod used to combine frames. Options are: mean, median, weight-
mean

satpixstr reject,
force,
nothing

rejectHandling of saturated pixels. Options are: reject, force, nothing

sigrejint,
float

20.0 Sigma level to reject cosmic rays (<= 0.0 means no CR removal)

n_lohilist 0, 0 Number of pixels to reject at the lowest and highest ends of the distri-
bution; i.e., n_lohi = low, high. Use None for no limit.

sig_lohilist 3.0,
3.0

Sigma-clipping level at the low and high ends of the distribution; i.e.,
sig_lohi = low, high. Use None for no limit.

replacestr min, max,
mean, median,
weightmean,
maxnonsat

maxnonsatIf all pixels are rejected, replace them using this method. Options are:
min, max, mean, median, weightmean, maxnonsat

lamaxiterint 1 Maximum number of iterations for LA cosmics routine.
grow int,

float
1.5 Factor by which to expand regions with cosmic rays detected by the

LA cosmics routine.
rmcompactbool True Remove compact detections in LA cosmics routine
sigclipint,

float
4.5 Sigma level for rejection in LA cosmics routine

sigfracint,
float

0.3 Fraction for the lower clipping threshold in LA cosmics routine.

objlimint,
float

3.0 Object detection limit in LA cosmics routine

bias str as_available,
force, skip

as_availableParameter for bias subtraction. as_available: Bias subtract if bias
frames were providedforce: Require bias subtraction, i.e., break if
bias frames were not providedskip: Skip bias subtraction even if bias
frames were provided

ScienceImagePar Keywords

Class Instantiation: pypeit.par.pypeitpar.ScienceImagePar

2.1. PypeIt Parameters 17

PypeIt Documentation, Release 0.11.1dev

Key Type Op-
tions

De-
fault

Description

bspline_spacingint,
float

0.6 Break-point spacing for the bspline sky subtraction fits.

boxcar_radiusint,
float

1.5 Boxcar radius in arcseconds used for boxcar extraction

trace_npolyint 5 Order of legendre polynomial fits to object traces.
global_sky_stdbool Global sky subtraction will be performed on standard stars. This should be turnedoff

for example for near-IR reductions with narrow slits, since bright standards canfill the
slit causing global sky-subtraction to fail. In these situations we go straight to local
sky-subtraction since it is designed to deal with such situations

sig_threshint,
float

10.0 Significance threshold for object finding.

maxnumberint 10 Maximum number of objects to extract in a science frame. Use None for no limit.
sn_gaussint,

float
4.0 S/N threshold for performing the more sophisticated optimal extraction which per-

forms a b-spline fit to the object profile. For S/N < sn_gauss the code will simply
optimal extractwith a Gaussian with FWHM determined from the object finding.

find_trim_edgelist 5, 5 Trim the slit by this number of pixels left/right before finding objects
std_prof_nsigmafloat 30.0 prof_nsigma parameter for Standard star extraction. Prevents undesired rejection.
model_full_slitbool False If True local sky subtraction will be performed on the entire slit. If False, local

sky subtraction will be applied to only a restricted region around each object. This
should be set to True for either multislit observations using narrow slits or echelle
observations with narrow slits

no_polybool False Turn off polynomial basis (Legendre) in global sky subtraction
manuallist List of manual extraction parameter sets
sky_sigrejfloat 3.0 Rejection parameter for local sky subtraction

FlexurePar Keywords

Class Instantiation: pypeit.par.pypeitpar.FlexurePar

Key Type Op-
tions

Default Description

methodstr boxcar,
slitcen,
skip

skip Method used to correct for flexure. Use skip for no
correction. If slitcen is used, the flexure correction is
performed before the extraction of objects (not recom-
mended). Options are: None, boxcar, slitcen, skip

maxshiftint,
float

20 Maximum allowed flexure shift in pixels.

spectrumstr /Users/westfall/
Work/packages/
pypeit/pypeit/
data/sky_spec/
paranal_sky.fits

Archive sky spectrum to be used for the flexure correc-
tion.

18 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

FluxCalibrationPar Keywords

Class Instantiation: pypeit.par.pypeitpar.FluxCalibrationPar

Key Type Op-
tions

De-
fault

Description

balm_mask_widfloat 5.0 Mask width for Balmer lines in Angstroms.
std_filestr Standard star file to generate sensfunc
std_obj_idstr,

int
Specifies object in spec1d file to use as standard. The brightest object found is used
otherwise.

sensfuncstr FITS file that contains or will contain the sensitivity function.
extinct_correctbool True If extinct_correct=True the code will use an atmospheric extinction model to ex-

tinction correct the data below 10000A. Note that this correction makes no sense
if one is telluric correcting and this shold be set to False

telluric_correctbool False If telluric_correct=True the code will grab the sens_dict[‘telluric’] tag from the
sensfunc dictionary and apply it to the data.

star_typestr Spectral type of the standard star (for near-IR mainly)
star_magfloat Magnitude of the standard star (for near-IR mainly)
multi_detlist List of detector numbers to splice together for multi-detector instruments (e.g.

DEIMOS) They are assumed to be in order of increasing wavelength And that
there is no overlap in wavelength across detectors (might be ok if there is)

telluricbool False If telluric=True the code creates a synthetic standard star spectrum using the Ku-
rucz models, the sens func is created setting nresln=1.5 it contains the correction
for telluric lines.

poly_norderint 5 Polynomial order for sensfunc fitting
polycorrectbool True Whether you want to correct the sensfunc with polynomial in the telluric and re-

combination line regions

2.1.2 Instrument-Specific Default Configuration

The following provides the changes to the global default parameters provided above for each instrument. That is, if
one were to include these in the PypeIt file, you would be reproducing the effect of the default_pypeit_par method
specific to each derived pypeit.spectrographs.spectrograph.Spectrograph class.

KECK DEIMOS

Alterations to the default parameters are:

[rdx]
spectrograph = keck_deimos

[calibrations]
[[biasframe]]

number = 5
exprng = None, 2

[[darkframe]]
exprng = 999999, None

[[arcframe]]
number = 1
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1

(continues on next page)

2.1. PypeIt Parameters 19

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

[[[process]]]
sigrej = -1

[[pixelflatframe]]
number = 5
exprng = None, 30
[[[process]]]

combine = median
sig_lohi = 10.0, 10.0

[[pinholeframe]]
exprng = 999999, None

[[traceframe]]
number = 3
exprng = None, 30

[[standardframe]]
number = 1

[[wavelengths]]
lamps = ArI, NeI, KrI, XeI
nonlinear_counts = 56360.1
match_toler = 2.5
n_first = 3

[[slits]]
sigdetect = 50.0
trace_npoly = 3

[scienceframe]
exprng = 30, None
[[process]]

sigclip = 4.0
objlim = 1.5

[flexure]
method = boxcar

KECK LRISb

Alterations to the default parameters are:

[rdx]
spectrograph = keck_lris_blue

[calibrations]
[[biasframe]]

number = 5
exprng = None, 1

[[darkframe]]
exprng = 999999, None

[[arcframe]]
number = 1
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
exprng = None, 30

[[pinholeframe]]

(continues on next page)

20 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

exprng = 999999, None
[[traceframe]]

number = 3
exprng = None, 30

[[standardframe]]
number = 1

[[wavelengths]]
method = full_template
lamps = NeI, ArI, CdI, KrI, XeI, ZnI, HgI
nonlinear_counts = 56360.1
sigdetect = 10.0
rms_threshold = 0.2
match_toler = 2.5
n_first = 3

[[slits]]
sigdetect = 30.0

[scienceframe]
exprng = 29, None

[flexure]
method = boxcar

KECK LRISr

Alterations to the default parameters are:

[rdx]
spectrograph = keck_lris_red

[calibrations]
[[biasframe]]

number = 5
exprng = None, 1

[[darkframe]]
exprng = 999999, None

[[arcframe]]
number = 1
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
exprng = None, 30

[[pinholeframe]]
exprng = 999999, None

[[traceframe]]
number = 3
exprng = None, 30

[[standardframe]]
number = 1

[[wavelengths]]
lamps = NeI, ArI, CdI, KrI, XeI, ZnI, HgI
nonlinear_counts = 49806.6
sigdetect = 10.0

(continues on next page)

2.1. PypeIt Parameters 21

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

rms_threshold = 0.2
[[slits]]

sigdetect = 50.0
[[tilts]]

tracethresh = 25
maxdev_tracefit = 1.0
spat_order = 4
spec_order = 7
maxdev2d = 1.0
sigrej2d = 5.0

[scienceframe]
exprng = 29, None
[[process]]

sigclip = 5.0
objlim = 5.0

[scienceimage]
bspline_spacing = 0.8

[flexure]
method = boxcar

KECK LRISr

Alterations to the default parameters are:

[rdx]
spectrograph = keck_lris_red

[calibrations]
[[biasframe]]

number = 5
exprng = None, 1

[[darkframe]]
exprng = 999999, None

[[arcframe]]
number = 1
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
exprng = None, 30

[[pinholeframe]]
exprng = 999999, None

[[traceframe]]
number = 3
exprng = None, 30

[[standardframe]]
number = 1

[[wavelengths]]
lamps = NeI, ArI, CdI, KrI, XeI, ZnI, HgI
nonlinear_counts = 70731.92549999998
sigdetect = 10.0
rms_threshold = 0.2

(continues on next page)

22 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

[[slits]]
sigdetect = 50.0

[[tilts]]
tracethresh = 25
maxdev_tracefit = 1.0
spat_order = 4
spec_order = 7
maxdev2d = 1.0
sigrej2d = 5.0

[scienceframe]
exprng = 29, None
[[process]]

sigclip = 5.0
objlim = 5.0

[scienceimage]
bspline_spacing = 0.8

[flexure]
method = boxcar

KECK NIRES

Alterations to the default parameters are:

[rdx]
spectrograph = keck_nires

[calibrations]
[[biasframe]]

useframe = none
[[darkframe]]

exprng = 20, None
[[arcframe]]

number = 1
exprng = 20, None
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
[[traceframe]]

number = 5
[[standardframe]]

number = 1
exprng = None, 20

[[flatfield]]
illumflatten = False

[[wavelengths]]
method = reidentify
echelle = True
ech_norder_coeff = 6
ech_sigrej = 3.0
lamps = OH_NIRES
nonlinear_counts = 760000.0

(continues on next page)

2.1. PypeIt Parameters 23

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

fwhm = 5.0
reid_arxiv = keck_nires.fits
rms_threshold = 0.2
n_final = 3, 4, 4, 4, 4

[[tilts]]
tracethresh = 10.0

[scienceframe]
exprng = 20, None
[[process]]

satpix = nothing
sigclip = 20.0

[scienceimage]
bspline_spacing = 0.8

KECK NIRSPEC

Alterations to the default parameters are:

[calibrations]
[[biasframe]]

exprng = None, 2
[[darkframe]]

exprng = None, 5
[[arcframe]]

number = 1
exprng = 1, None
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
exprng = 0, None

[[pinholeframe]]
exprng = 999999, None

[[traceframe]]
number = 5
exprng = 0, None

[[standardframe]]
number = 1
exprng = None, 5

[[wavelengths]]
lamps = OH_R24000
rms_threshold = 0.2

[[slits]]
sigdetect = 200.0

[[tilts]]
tracethresh = 10.0

[scienceframe]
exprng = 1, None

24 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

SHANE KASTb

Alterations to the default parameters are:

[rdx]
spectrograph = shane_kast_blue

[calibrations]
[[biasframe]]

number = 5
exprng = None, 1

[[darkframe]]
exprng = 999999, None

[[arcframe]]
number = 1
exprng = None, 61
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
exprng = 0, None

[[pinholeframe]]
exprng = 999999, None

[[traceframe]]
number = 5
exprng = 0, None

[[standardframe]]
number = 1
exprng = 1, 61

[[wavelengths]]
method = full_template
lamps = CdI, HgI, HeI
nonlinear_counts = 49806.6
rms_threshold = 0.2
match_toler = 2.5
n_first = 3

[[tilts]]
maxdev_tracefit = 0.02
spec_order = 5
maxdev2d = 0.02

[scienceframe]
exprng = 61, None

[flexure]
method = boxcar
spectrum = /Users/westfall/Work/packages/pypeit/pypeit/data/sky_spec/sky_kastb_

→˓600.fits

SHANE KASTr

Alterations to the default parameters are:

[rdx]
spectrograph = shane_kast_red

(continues on next page)

2.1. PypeIt Parameters 25

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

[calibrations]
[[biasframe]]

number = 5
exprng = None, 1

[[darkframe]]
exprng = 999999, None

[[arcframe]]
number = 1
exprng = None, 61
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
exprng = 0, None

[[pinholeframe]]
exprng = 999999, None

[[traceframe]]
number = 5
exprng = 0, None

[[standardframe]]
number = 1
exprng = 1, 61

[[wavelengths]]
lamps = NeI, HgI, HeI, ArI
nonlinear_counts = 49806.6

[scienceframe]
exprng = 61, None

[flexure]
method = boxcar

SHANE KASTr

Alterations to the default parameters are:

[rdx]
spectrograph = shane_kast_red_ret

[calibrations]
[[biasframe]]

number = 5
exprng = None, 1

[[darkframe]]
exprng = 999999, None

[[arcframe]]
number = 1
exprng = None, 61
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1

(continues on next page)

26 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

[[pixelflatframe]]
number = 3
exprng = 0, None

[[pinholeframe]]
exprng = 999999, None

[[traceframe]]
number = 3
exprng = 0, None

[[standardframe]]
number = 1
exprng = 1, 61

[[wavelengths]]
lamps = NeI, HgI, HeI, ArI
nonlinear_counts = 91200.0

[scienceframe]
exprng = 61, None

[flexure]
method = boxcar

TNG DOLORES

Alterations to the default parameters are:

[calibrations]
[[biasframe]]

number = 5
exprng = None, 0.1

[[darkframe]]
exprng = 999999, None

[[arcframe]]
number = 1
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
[[pinholeframe]]

exprng = 999999, None
[[traceframe]]

number = 3
[[standardframe]]

number = 1
[scienceframe]

exprng = 1, None

WHT ISISb

Alterations to the default parameters are:

[rdx]
spectrograph = wht_isis_blue

(continues on next page)

2.1. PypeIt Parameters 27

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

[calibrations]
[[biasframe]]

number = 5
exprng = None, 1

[[darkframe]]
exprng = 999999, None

[[arcframe]]
number = 1
exprng = None, 120
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
[[[process]]]

combine = median
sig_lohi = 10.0, 10.0

[[pinholeframe]]
exprng = 999999, None

[[traceframe]]
number = 3

[[standardframe]]
number = 1
exprng = None, 120

[[wavelengths]]
method = simple

[scienceframe]
exprng = 90, None

VLT XShooter_UVB

Alterations to the default parameters are:

[rdx]
spectrograph = vlt_xshooter_uvb

[calibrations]
[[biasframe]]

number = 5
[[arcframe]]

number = 1
[[[process]]]

overscan = median
sigrej = -1

[[tiltframe]]
number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
[[traceframe]]

number = 3
[[[process]]]

(continues on next page)

28 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

overscan = median
[[standardframe]]

number = 1
[[wavelengths]]

method = reidentify
echelle = True
ech_norder_coeff = 5
ech_sigrej = 3.0
lamps = ThAr_XSHOOTER_UVB
nonlinear_counts = 55900.0
reid_arxiv = vlt_xshooter_uvb1x1_iraf.json
rms_threshold = 0.5

[[slits]]
maxshift = 0.5
sigdetect = 8.0

[scienceframe]
useframe = overscan

VLT XShooter_VIS

Alterations to the default parameters are:

[rdx]
spectrograph = vlt_xshooter_vis

[calibrations]
[[biasframe]]

number = 5
[[arcframe]]

number = 1
[[[process]]]

overscan = median
sigrej = -1

[[tiltframe]]
number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
[[traceframe]]

number = 3
[[[process]]]

overscan = median
[[standardframe]]

number = 1
[[flatfield]]

tweak_slits_thresh = 0.9
[[wavelengths]]

method = reidentify
echelle = True
ech_sigrej = 3.0
lamps = ThAr_XSHOOTER_VIS
nonlinear_counts = 56360.1
fwhm = 11.0
reid_arxiv = vlt_xshooter_vis1x1.fits
cc_thresh = 0.5

(continues on next page)

2.1. PypeIt Parameters 29

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

cc_local_thresh = 0.5
rms_threshold = 0.5
n_final = 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3

[[slits]]
maxshift = 0.5
sigdetect = 8.0
trace_npoly = 8

[[tilts]]
tracethresh = 15
spec_order = 5

[scienceframe]
useframe = overscan

[scienceimage]
bspline_spacing = 0.5
model_full_slit = True

VLT XShooter_NIR

Alterations to the default parameters are:

[rdx]
spectrograph = vlt_xshooter_nir

[calibrations]
[[biasframe]]

useframe = none
number = 5

[[arcframe]]
number = 1
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
[[traceframe]]

number = 3
[[standardframe]]

number = 1
[[flatfield]]

illumflatten = False
tweak_slits_thresh = 0.9

[[wavelengths]]
method = reidentify
echelle = True
ech_nspec_coeff = 5
ech_norder_coeff = 5
ech_sigrej = 3.0
lamps = OH_XSHOOTER
nonlinear_counts = 172000.0
sigdetect = 10.0
fwhm = 5.0
reid_arxiv = vlt_xshooter_nir.fits
cc_thresh = 0.5

(continues on next page)

30 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

cc_local_thresh = 0.5
rms_threshold = 0.25

[[slits]]
maxshift = 0.5
sigdetect = 120.0
trace_npoly = 8

[[tilts]]
tracethresh = 25.0
maxdev_tracefit = 0.04
maxdev2d = 0.04

[scienceframe]
useframe = none
[[process]]

satpix = nothing
sigclip = 20.0

[scienceimage]
bspline_spacing = 0.8
trace_npoly = 8
global_sky_std = False
model_full_slit = True

GEMINI-N GNIRS

Alterations to the default parameters are:

[rdx]
spectrograph = gemini_gnirs

[calibrations]
[[biasframe]]

useframe = none
[[[process]]]

overscan = none
[[darkframe]]

[[[process]]]
overscan = none

[[arcframe]]
number = 1
[[[process]]]

overscan = none
sigrej = -1

[[tiltframe]]
number = 1
[[[process]]]

overscan = none
sigrej = -1

[[pixelflatframe]]
number = 5
exprng = None, 30
[[[process]]]

overscan = none
[[pinholeframe]]

[[[process]]]
overscan = none

[[traceframe]]
number = 5

(continues on next page)

2.1. PypeIt Parameters 31

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

exprng = None, 30
[[[process]]]

overscan = none
[[standardframe]]

number = 1
exprng = None, 30
[[[process]]]

overscan = none
[[flatfield]]

illumflatten = False
tweak_slits_thresh = 0.9

[[wavelengths]]
method = reidentify
echelle = True
ech_nspec_coeff = 3
ech_norder_coeff = 5
ech_sigrej = 3.0
lamps = OH_GNIRS
nonlinear_counts = 106500.0
reid_arxiv = gemini_gnirs.fits
cc_thresh = 0.6
rms_threshold = 1.0
n_final = 1, 3, 3, 3, 3, 3

[[slits]]
maxshift = 0.5
sigdetect = 50.0

[[tilts]]
tracethresh = 5.0, 10, 10, 10, 10, 10
sig_neigh = 5.0
nfwhm_neigh = 2.0

[scienceframe]
exprng = 30, None

[scienceimage]
bspline_spacing = 0.8
global_sky_std = False
sig_thresh = 5.0
model_full_slit = True
no_poly = True

GEMINI-S GMOS-S

Alterations to the default parameters are:

[calibrations]
[[biasframe]]

number = 5
[[arcframe]]

number = 1
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

(continues on next page)

32 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

number = 5
[[[process]]]

combine = median
sig_lohi = 10.0, 10.0

[[traceframe]]
number = 3

[[standardframe]]
number = 1

[[wavelengths]]
lamps = CuI, ArI, ArII
rms_threshold = 0.4

[[slits]]
trace_npoly = 3

GEMINI-N GMOS-N

Alterations to the default parameters are:

[calibrations]
[[biasframe]]

number = 5
[[arcframe]]

number = 1
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
[[[process]]]

combine = median
sig_lohi = 10.0, 10.0

[[traceframe]]
number = 3

[[standardframe]]
number = 1

[[wavelengths]]
lamps = CuI, ArI, ArII
rms_threshold = 0.4

[[slits]]
trace_npoly = 3

GEMINI-N GMOS-N

Alterations to the default parameters are:

[calibrations]
[[biasframe]]

number = 5
[[arcframe]]

number = 1
[[[process]]]

(continues on next page)

2.1. PypeIt Parameters 33

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
[[[process]]]

combine = median
sig_lohi = 10.0, 10.0

[[traceframe]]
number = 3

[[standardframe]]
number = 1

[[wavelengths]]
lamps = CuI, ArI, ArII
rms_threshold = 0.4

[[slits]]
trace_npoly = 3

MAGELLAN FIRE

Alterations to the default parameters are:

[rdx]
spectrograph = magellan_fire

[calibrations]
[[biasframe]]

useframe = overscan
[[darkframe]]

exprng = 20, None
[[arcframe]]

number = 1
exprng = 20, None
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
[[traceframe]]

number = 5
[[standardframe]]

number = 1
exprng = None, 60

[[wavelengths]]
echelle = True
ech_sigrej = 3.0
lamps = OH_XSHOOTER
nonlinear_counts = 20000.0
rms_threshold = 0.2

[[slits]]
maxshift = 0.5

(continues on next page)

34 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

sigdetect = 50
[[tilts]]

tracethresh = 10, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
→˓30, 30, 30, 30, 30, 10
[scienceframe]

exprng = 20, None
[[process]]

satpix = nothing
sigclip = 20.0

MAGELLAN magellan_mage

Alterations to the default parameters are:

[rdx]
spectrograph = magellan_mage

[calibrations]
[[biasframe]]

number = 5
[[darkframe]]

exprng = 20, None
[[arcframe]]

number = 1
exprng = 20, None
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
[[traceframe]]

number = 3
[[standardframe]]

number = 1
exprng = None, 20

[[wavelengths]]
method = reidentify
echelle = True
ech_sigrej = 3.0
lamps = ThAr_MagE
nonlinear_counts = 64879.65
reid_arxiv = magellan_mage.fits
cc_thresh = 0.5
cc_local_thresh = 0.5
rms_threshold = 0.2

[[slits]]
maxshift = 3.0
sigdetect = 10.0

[[tilts]]
tracethresh = 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10

[scienceframe]
exprng = 20, None
[[process]]

(continues on next page)

2.1. PypeIt Parameters 35

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

satpix = nothing
sigclip = 20.0

[scienceimage]
find_trim_edge = 4, 4

KECK HIRES_R

Alterations to the default parameters are:

[rdx]
spectrograph = keck_hires_red

[calibrations]
[[biasframe]]

number = 5
[[arcframe]]

number = 1
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
[[traceframe]]

number = 3
[[standardframe]]

number = 1
exprng = None, 600

[[wavelengths]]
echelle = True
ech_sigrej = 3.0
lamps = ThAr
nonlinear_counts = 56360.1
rms_threshold = 0.25

[[slits]]
maxshift = 0.5
sigdetect = 600.0

[scienceframe]
exprng = 600, None
[[process]]

satpix = nothing
sigclip = 20.0

LBT MODS1R

Alterations to the default parameters are:

[rdx]
spectrograph = lbt_mods1r

[calibrations]
[[biasframe]]

number = 5
exprng = None, 1

(continues on next page)

36 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

[[darkframe]]
exprng = 999999, None

[[arcframe]]
number = 1
exprng = None, 60
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
exprng = 0, None

[[pinholeframe]]
exprng = 999999, None

[[traceframe]]
number = 5
exprng = 0, None

[[standardframe]]
number = 1
exprng = 1, 200

[[wavelengths]]
lamps = OH_MODS
nonlinear_counts = 64879.65
fwhm = 10.0
rms_threshold = 1.0
n_first = 1

[[slits]]
sigdetect = 300

[[tilts]]
maxdev_tracefit = 0.02
spat_order = 5
spec_order = 5
maxdev2d = 0.02

[scienceframe]
exprng = 200, None

LBT MODS1B

Alterations to the default parameters are:

[rdx]
spectrograph = lbt_mods1b

[calibrations]
[[biasframe]]

number = 5
exprng = None, 1

[[darkframe]]
exprng = 999999, None

[[arcframe]]
number = 1
exprng = None, 60
[[[process]]]

sigrej = -1

(continues on next page)

2.1. PypeIt Parameters 37

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

[[tiltframe]]
number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
exprng = 0, None

[[pinholeframe]]
exprng = 999999, None

[[traceframe]]
number = 5
exprng = 0, None

[[standardframe]]
number = 1
exprng = 1, 200

[[wavelengths]]
lamps = XeI, ArII, ArI, NeI, KrI
nonlinear_counts = 64879.65
rms_threshold = 0.2
n_first = 1

[[slits]]
sigdetect = 300

[[tilts]]
maxdev_tracefit = 0.02
spec_order = 5
maxdev2d = 0.02

[scienceframe]
exprng = 200, None

LBT MODS2R

Alterations to the default parameters are:

[rdx]
spectrograph = lbt_mods2r

[calibrations]
[[biasframe]]

number = 5
exprng = None, 1

[[darkframe]]
exprng = 999999, None

[[arcframe]]
number = 1
exprng = None, 60
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
exprng = 0, None

[[pinholeframe]]
exprng = 999999, None

(continues on next page)

38 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

[[traceframe]]
number = 5
exprng = 0, None

[[standardframe]]
number = 1
exprng = 1, 200

[[wavelengths]]
lamps = OH_MODS
nonlinear_counts = 64879.65
fwhm = 10.0
rms_threshold = 1.0
n_first = 1

[[slits]]
sigdetect = 300

[[tilts]]
maxdev_tracefit = 0.02
spec_order = 5
maxdev2d = 0.02

[scienceframe]
exprng = 200, None

LBT MODS2B

Alterations to the default parameters are:

[rdx]
spectrograph = lbt_mods2b

[calibrations]
[[biasframe]]

number = 5
exprng = None, 1

[[darkframe]]
exprng = 999999, None

[[arcframe]]
number = 1
exprng = None, 60
[[[process]]]

sigrej = -1
[[tiltframe]]

number = 1
[[[process]]]

sigrej = -1
[[pixelflatframe]]

number = 5
exprng = 0, None

[[pinholeframe]]
exprng = 999999, None

[[traceframe]]
number = 5
exprng = 0, None

[[standardframe]]
number = 1
exprng = 1, 200

[[wavelengths]]
lamps = XeI, ArII, ArI, NeI, KrI

(continues on next page)

2.1. PypeIt Parameters 39

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

nonlinear_counts = 64879.65
rms_threshold = 0.2
n_first = 1

[[slits]]
sigdetect = 300

[[tilts]]
maxdev_tracefit = 0.02
spec_order = 5
maxdev2d = 0.02

[scienceframe]
exprng = 200, None

VLT FORS2

Alterations to the default parameters are:

[rdx]
spectrograph = vlt_fors2

[calibrations]
[[biasframe]]

number = 5
[[[process]]]

overscan = median
[[darkframe]]

[[[process]]]
overscan = median

[[arcframe]]
number = 1
[[[process]]]

overscan = median
sigrej = -1

[[tiltframe]]
number = 1
[[[process]]]

overscan = median
sigrej = -1

[[pixelflatframe]]
number = 5
[[[process]]]

overscan = median
[[pinholeframe]]

[[[process]]]
overscan = median

[[traceframe]]
number = 3
[[[process]]]

overscan = median
[[standardframe]]

number = 1
[[[process]]]

overscan = median
[[flatfield]]

illumflatten = False
tweak_slits_thresh = 0.9

[[wavelengths]]

(continues on next page)

40 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

lamps = HeI, ArI
sigdetect = 10.0
rms_threshold = 0.25

[[slits]]
maxshift = 0.5
sigdetect = 50.0
trace_npoly = 3

[[tilts]]
tracethresh = 25.0

[flexure]
method = boxcar

2.2 PypeIt Cookbook

This document gives an overview on how to run PypeIt, i.e. minimal detail is provided. Notes on Installing PypeIt are
found elsewhere.

We now also provide a set of Slides that provide a more visual step-by-step. Find them here at the PYPEIT HOWTO
These should be considered to contain the most up-to-date information.

The following outlines the standard steps for running PypeIt on a batch of data. There are alternate ways to run these
steps, but non-experts should adhere to the following approach.

2.2.1 Outline

Here is the basic outline of the work flow. The following is for one instrument in one working directory.

1. Organize/Prepare your data

• Identify folder(s) with raw images

• The raw images can be gzip compressed although the Python FITS reader works much more slowly on gzipped
files

• We will refer to that folder as RAWDIR

2. Run the pypeit_setup without the –custom option to handle instrument setup.

Inputs are the path to the raw data with the data prefix (e.g. lrisb) and then one of the PypeIt-approved Instru-
ments (e.g. keck_lris_blue, shane_kast_red). Here is an example:

pypeit_setup -r /full_path/RAWDIR/lrisb -s keck_lris_blue

This does the following:

• Generates a setup_files/ folder that holds two files

• Generates a dummy PypeIt reduction file within the folder [ignore it]

• Generates a .sorted file which lists files sorted by setup

You should scan the output WARNING messages for insufficient calibration files (e.g. missing arc frames)

3. Inspect the sorted-file to confirm the expected instrument configuration(s)

• If needed, add more files to your RAWDIR

• If you do, repeat Step 2 above

2.2. PypeIt Cookbook 41

https://tinyurl.com/pypeit-howto

PypeIt Documentation, Release 0.11.1dev

4. Run pypeit_setup with the –custom option

This produces one folder per setup and a custom PypeIt Reduction File. Here is an example of the call:

pypeit_setup -r /full_path/RAWDIR/lrisb -s keck_lris_blue -c=all

This generates one folder per setup and a unique PypeIt Reduction File file in each folder.

5. Prepare the custom PypeIt Reduction File for reducing a given setup

• Enter one of the setup folders (e.g. kast_lris_blue_A)

• Modify the custom PypeIt Reduction File as needed

– trim/add calibration files

– edit frametypes

– Modify user-defined execution parameters

6. Run the reduction (described in Running PypeIt)

• run_pypeit PypeIt_file

• Hope for the best. . . :)

7. Examine QA (PypeIt QA)

• When an exposure is fully reduced, a QA file (PDF) is generated in the QA folder

• Examine the output as described in the PypeIt QA documentation

8. Examine spectra

• Examine the extracted 1D spectra with pypeit_show_1dspec

• Examine the extracted 2D spectra with pypeit_show_2dspec

9. Flux

10. Coadd (see Coadd 1D Spectra)

11. Repeat steps 5-10 for additional setups, as desired

2.3 PypeIt Reduction File

2.3.1 Overview

The primary file which informs the PypeIt data reduction pipeline is referred to as the PypeIt reduction file and it has a
.pypeit extension. This can be generated from PypeIt scripts (recommended) or by hand if you are sufficiently familiar
with the code.

This document provides guidance on generating and modifying the file.

We recommend that you generate a unique PypeIt file for each instrument setup (modulo detectors) or for each mask.
It is possible that you will need to modify the settings for different gratings, etc. It will also enable you to more easily
customize the associated calibration files to process.

2.3.2 Types

For reference, we distinguish between several types of PypeIt files.

42 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

Instrument PypeIt file

For each instrument being reduced in a working folder, the top-level PypeIt file is referred to as an instrument PypeIt
file. It is intended to be used to generate the instrument setups file and custom PypeIt files for the full reductions.

The standard naming for the instrument PypeIt file is:

instrument_date.pypeit
e.g., lris_blue_2016-Nov-23.pypeit

Custom PypeIt file

When one performs the full reduction on a set of files for a given setup, the custom PypeIt file is used. We refer to it
as custom because it may be significantly customized for the specifc instrument configuration and/or target.

While it is possible for a custom PypeIt files to be used on more than one setup grouping, it is not recommended.

A typical naming scheme is by setups, e.g.:

lris_blue_setup_A.pypeit

although specifying by instrument configuration:

kast_blue_600_4310_d55.pypeit

or target:

kast_blue_3C273.pypeit

may be preferable.

2.3.3 pypeit_setup

By default, the pypeit_setup script will generate a set of custom .pypeit files, one per instrument configuration. These
will have names like:

lris_blue_setup_A.pypeit

This is the default because we expect that most users wish to reduce at one time the full set of exposures taken with
the same instrument configuration. Of course, one can create other custom .pypeit files.

2.3.4 By Example

For reference, there are existing PypeIt files in PypeIt development suite. The PypeIt development suite is recom-
mended for download (see Installing PypeIt), and the relevant PypeIt files are located in:

PypeIt-development-suite/pypeit_files/

You should be able to find one that matches your instrument.

2.3. PypeIt Reduction File 43

https://github.com/pypeit/PypeIt-development-suite

PypeIt Documentation, Release 0.11.1dev

2.3.5 Line by line

This section describes the various sections of a .pypeit file. In principle, you can use the following description to build a
.pypeit file from scratch. This is not recommended. The following documentation is mainly for guiding modifications
to an existing PypeIt file.

Create a .pypeit file. Name it anything you want, but for example, it’s useful to have: the instrument name, the grating
or grism used, the dichroic, etc. For example, we could call our PypeIt file ‘lris_blue_long_600_4000_d560.pypeit’,
for our data was collected on LRIS’s blue arm, in long slit mode, using the 600/4000 grism and d560 dichroic.

You can make any comments in your PypeIt file with a pound sign:

This is a comment line

We recommend you separate the main blocks of the .pypeit file with comments.

The first thing to include are changes to the default settings related to running PypeIt. The only one required is to set
the name of the spectrograph:

run spectograph name_of_your_spectrograph

We do recommend including several others, and the .pypeit files made by the pypeit_pypfiles script includes most of
the following. Here are ones that one typically sets:

Change the default settings
run ncpus 1 # number of CPUs to use; can also negative integers,

so -1 means all but one CPU
run spectrograph lris_blue # the spectrograph (+arm, if necessary) this set of
→˓data is from;

see README for list of available instruments
output verbosity 2 # level of screen output; 0 = no output, 1 = low
→˓level of output;

2 = output everything
output overwrite True # overwrite any existing output files?
output sorted lris_blue_long_600_4000_d560 # name of output files

bias

If you have no bias frames and/or wish to subtract the bias with the overscan region, then set the following:

bias useframe overscan

Setup block

If a Setup is defined here, the value (e.g. “A” or “D”) will be used instead of starting from the default “A” value. But
only if there is a single Setup in the PypeIt file.

Data block

By Files

This is the recommended approach when performing the full run (as opposed to pypeit_setup).

44 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

By Path Only

Next, tell PypeIt where your raw data lives! One specifies the full path and may use wild cards to include a set of files.
If the data are compressed, include that extension. Multiple entries are allowed

Here is an example:

Read in the data
data read
/Users/path/to/your/raw/data/*.fits

data end

If you wish to skip individual files, you can specify these without the complete path, e.g.:

skip LB.20160406.17832.fits

These will be ignored as if they didn’t exist.

Spect block

Then, give PypeIt some information about your raw data. For example, PypeIt only accepts calibration files if they
were created within a time window of the science frame of interest. You can set your own time window here. PypeIt
also requires a certain number of each type of calibration file to be matched with the science frame, and here you can
set what you want the minimum to be:

spect read
#fits calwin 1000. # calibration window; default window is 12 hrs;

here it is changed to 1000. hrs
pixelflat number 1 # number of pixel flats needed for data reduction
bias number 3 # number of bias frames; note that in this case,

PypeIt will combine the 3 biases into a master bias
arc number 1 # number of arcs
trace number 1 # number of trace frames

spect end

In addition to the basic calibration settings above, you may wish to redefine the frametype of a given file. Here are
some examples:

spect read
set bias b150910_2036.fits.gz
set bias b150910_2037.fits.gz
set bias b150910_2038.fits.gz
set pixelflat b150910_2051.fits.gz
set trace b150910_2051.fits.gz
set standard b150910_2083.fits.gz

spect end

Whole enchilada

With that, the most basic PypeIt file looks something like this:

Change the default settings
run ncpus 1
run spectrograph lris_blue

(continues on next page)

2.3. PypeIt Reduction File 45

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

output verbosity 2
output overwrite True
output sorted lris_blue_long_600_4000_d560

Read in the data
data read
/Users/path/to/your/raw/data/*.fits

data end

spect read
#fits calwin 1000.

pixelflat number 1
bias number 3
arc number 1
trace number 1

spect end

You can now run PypeIt with this .pypeit settings file! See how in Running PypeIt.

2.4 Calibration Check

2.4.1 Overview

We strongly recommend that one perform a calibration check with the .pypeit file before proceeding to run the reduc-
tion. This verifies that the number of desired calibration files exist and allows the user to examine how the code will
group calibration files with science frames. It does not check the sanctity of the files nor process the calibrations in
any manner.

2.4.2 calcheck

The procedure is simple. Add the following line to your .pypeit file:

run calcheck True

You must also verify that your .pypeit file does not include this line:

run setup True # Cannot be set for calcheck or full reduction

Either set ‘run setup’ to False, comment it out, or remove it altogether.

You may then run PypeIt, e.g.:

run_pypeit kast_blue_setup_A.pypeit

The code will exit with error if there are insufficient calibration frames. Otherwise, it will exit after organizing the
files and will produce a new .group file for your inspection.

You should confirm that the correct number of science and exposure standard files have been identified.

46 Chapter 2. Running PypeIt

PypeIt Documentation, Release 0.11.1dev

2.4.3 Settings

PypeIt identifies calibration files that are closest in time to every individual science frame. You can place an upper
limit on the time window that PypeIt uses to search for calibrations but setting the keyword:

fits calwin 12.0

which will search for calibrations that were taken within +/-12 hours from a science frame. See docs on calwin for a
further discussion.

The primary settings you need to specify at this stage are:

1. The number of calibration files required of each frametype

2. Over-ride any frametype designations, as necessary.

3. Modify the method(s) for bias subtraction, flat fielding etc.

For the second issue, see modifying_frametype.

For the first issue see below:

calwin

When associating calibration files to a given science frame, PypeIt will restrict to data within a window in time. This
is specified by a calwin parameter which has a default value of 12 (hours) for most instruments. One can turn off this
restriction by setting the value to 0 in the Spect block:

fits calwin 0

This is the default for Taking Calibrations for LRISb and may become the default for all instruments.

Calib number

The user can specify and/or over-ride defaults for the number of calibration frames required by adding a series of lines
(or edit the existing ones) in the Spect block of the .pypeit file. One line per calibration frametype, as desired. Here is
a block one might use for LRISb:

Spect
spect read
arc number 1
trace number 5
bias number 10
standard number 1
pixelflat number 3

spect end

When a positive, non-zero value is used, the code will require that there be that many calibration frames for each
science frame reduced. And, PypeIt will restrict to precisely that many calibration files.

If you wish to use at least an input number of frames (and more if they exist), then specify the calibration number with
a negative integer value, e.g.:

pixelflat number 5
arc number 1
trace number -5
bias number -5
standard number -1

2.4. Calibration Check 47

PypeIt Documentation, Release 0.11.1dev

2.5 Running PypeIt

This document describes the process to run the reduction. It assumes:

1. You have already properly inspected and fussed with your setups (setup)

2. You have entered one of the setup sub-folders

3. You have calcheck on the custom PypeIt Reduction File and edited it as needed

4. You have double checked that neither run calcheck nor run setup are set to True in your custom PypeIt Reduction
File

See the PypeIt Cookbook for additional details.

2.5.1 run_pypeit

The main script to run the PypeIt reduction is run_pypeit. It should have been installed in your Python path. Here is
its usage:

usage: run_pypeit [-h] [-v VERBOSITY] [-m] [-d] [--debug_arc] pypeit_file

PypeIt : The Python Spectroscopic Data Reduction Pipeline v0.7.0.dev0
##
Available pipelines include:
armed, arms
Available spectrographs include:
isis_blue, lris_blue, kast_red, lris_red, kast_blue
Last updated: 07Feb2017

positional arguments:
pypeit_file PypeIt reduction file (must have .pypeit extension)

optional arguments:
-h, --help show this help message and exit
-v VERBOSITY, --verbosity VERBOSITY

(2) Level of verbosity (0-2)
-m, --use_masters Load previously generated MasterFrames
-d, --develop Turn develop debugging on
--debug_arc Turn wavelength/arc debugging on

Of these, only –use_masters is likely to be frequently used by the standard user. This flag will reload masters from the
hard-drive if they exist.

Advanced users may run with –develop to have additional logging output provided.

48 Chapter 2. Running PypeIt

CHAPTER 3

Data Products

3.1 Outputs

PypeIt, despite a pipeline for data reduction, is capable of generating an inordinate amount of data products. These
pages document the various data products and the means to control the output. A full description of the naming system
is described here.

3.1.1 Contents

Output Naming

There is no standard for naming data reduction output products in Astronomy, nor even common practices. PypeIt
follows its own schema.

A naming system must provide unique names (to avoid overwriting files) but one also desires a format that is both
compact and informative. Our approach is a compromise between these competing requirements/desires.

Source Files

This section describes the components of file naming for observed sources (including standard stars).

Prefix

The file type is indicated by its prefix, a short label. The following Table lists all formats for the Compact output
format of PypeIt. We describe each and include the likely suffix(es).

Prefix Format Suffix
spec1D multi-extension FITS; one binary FITS table per extracted object .fits
spec2D multi-extension FITS; one 2D array per spectral image .fits
qa Series of figures assessing data reduction and data quality .pdf

49

PypeIt Documentation, Release 0.11.1dev

Instrument

The second label indicates the instrument. Here are the set of currently supported instruments in PypeIt:

Instr Telescope Short Description Web Page
kastb Lick Shane 3m blue camera of the Kast dual-spectrometer KastWebSite
kastr Lick Shane 3m red camera of the Kast dual-spectrometer KastWebSite
lrisb Keck I blue camera of the LRIS spectrometer LRISWebSite

Date and Time

By including the UT observing date and time to the nearest second, we believe the filename is now unique. The UT
date + time are drawn from the Header and refer to the start of the observation, if there are multiple time stamps.
Other DRPs (e.g. LowRedux) have tended to use the Frame number as the unique identifier. We have broken with
that tradition: (1) to better follow archival naming conventions; (2) because of concerns that some facilities may not
include the frame number in the header; (3) some users may intentionally or accidentally generate multiple raw files
with the same frame number.

The adopted format is:

YYYYMMMDDTHHMMSS
e.g. 2015nov11T231402

A typical filename may then appear as:

spec1D_lrisb_2011nov11T231402.fits

Source Identifiers

PypeIt reduces each detector separately and associates identified slits and objects to that detector. Therefore, sources
are uniquely identified by a combination of these source-id-values. If requested (Explode), the Spec1D files can be
exploded to yield one FITS file per source. In this case, the filenames are appended by the source identifiers:

_DetID_SlitID_ObjID

A complete filename may then appear as:

spec1D_lrisb_2011nov11T231402_02_783_423.fits

For sanity sake, files that are exploded in this manner are placed into their own folders named by the instrument and
timestamp.

Calibration Files

The following section describes the components of file naming for calibrations.

Reduction Files

Several file are generated in preparing to run the full reduction and when running PypeIt. These are distinsuished by
extension:

50 Chapter 3. Data Products

http://mthamilton.ucolick.org/techdocs/instruments/kast/
http://mthamilton.ucolick.org/techdocs/instruments/kast/
https://www2.keck.hawaii.edu/inst/lris/
http://www.ucolick.org/~xavier/LowRedux/

PypeIt Documentation, Release 0.11.1dev

Spec1D Output

A primary data product for PypeIt are 1D, calibrated spectra for extracted sources. The most fundamental spectrum
may be described by two arrays: flux, wavelength. These together with an error array are the minimal output for even
the Quick reduction mode. There are, however, several methods of extraction, calibration, etc. which yield various
data products.

Arrays

To allow the inclusion of multiple combinations of arrays, the standard format in PypeIt for spec1D output per object
is a binary FITS table. The types of spectral arrays that may be outputted are:

Type Default
Unit

Description Comments

WAVE Angstrom Calibrated wavelenth of each pixel Vacuum, heliocentric corrected
COUNTS/FLUX e− or f𝜆 Integrated across the spatial profile Not normalized by exposure time
VAR/FVAR (e−)2 or (f𝜆)

2 Variance in the counts 0 or negative values indicate masked
pixels

MASK – Bit-wise mask values See ref for a description
SKY e−/pixel or𝜇 Sky model spectrum
TRACE pixel Best centroid of the object along the de-

tector

Extractions

Because there are several modes of extraction in PypeIt, there may be multiple outputs of the spectral arrays. These
are then prefixed by the extraction mode.

Extraction
Mode

Description

BOXCAR Top-hat extraction around the trace. The precise window used is defined by the BOX-
CAR_APERTURE, in pixels.

OPTIMAL Standard Horne algorithm for extraction using the fitted spatial profile. An estimate of this profile
is given by OBJ_FWHM

Therefore, the integrated counts for a boxcar extraction are given by the BOXCAR_COUNTS array with variance
BOXCAR_VAR.

Additional Parameters

In addition to the spectral arrays, a number of measurements are included in the binary FITS tables. This includes
identifiers for the object, which may locate the object on the detector. A complete listing is now given:

Keyword Type Description
DET_ID int Detector Identifier
SLIT_ID int Slit Identifier; given in fractional units of the detector
OBJ_ID int Object Identifier; given in fractional units of the slit
RAW_FILE str Name of the raw data file

3.1. Outputs 51

PypeIt Documentation, Release 0.11.1dev

Format

HDF5

PypeIt will generate a single HDF5 file for each science exposure. The HDF5 file contains the groups: header, meta,
boxcar and optimal. Each group has its respective datasets:

GroupDescription
Meta Meta is an astropy Table of N rows, corresponding to the N objects/spectra extracted from the exposure. The

table contains the RA, DEC, object ID, slit ID, detector number, science index, FWHM (spatial resolution
in arcseconds), resolution (spatial resolution in lambda/Dlambda), and xslit.

HeaderHeader contains the original header information as saved on the telescope.
Box-
car

Boxcar contains N datasets, corresponding to the N objects/ spectra extracted via boxcar extraction.

Op-
ti-
mal

Optimal contains N datasets, correspodning to the N objects/ spectra extracted via optimal extraction. If one
of the N objects were not extracted optimally, its dataset will still exist, but be empty.

FITS

If one uses the default Compact mode for outputs, a single multi-extension FITS file will be generated that contains
the binary FITS tables for each extracted source. To ease access to the individual tables, the FITS header contains the
following cards:

Header Card Type Example Description
NOBJ int 2 Number of extracted sources
ID_#### int 02334223 ID for the source (DET_ID, SLID_ID, OBJ_ID)
S2N_#### float 3.23 Median S/N of of the spectrum

In addition, a reproduction of nearly the entire Header from the raw FITS file is provided, modulo the header cards
that describe the data type and size (e.g. NAXIS).

Spec2D Output

During the data reduction proceess, PypeIt creates a series of 2D spectral images prior to extraction of 1D spectra.
And, of course, several of these 2D images may have greater value for analysis than the 1D spectra. For each on-source
exposure, PypeIt outputs a series of these images, with the number set by the Reduction Mode. The following table
describes the possible products:

2D Spec Type Description Written?
ivar Inverse variance image; sky+detector standard, full
mask Mask image full
objmodel Model of the object(s) flux full
processed Bias-subtracted, flat-fielded image full
residual Residual image; data-model full
sensitivity Sensitivity image for fluxing (surface brightness) full
skysub Sky-subtracted, processed image standard, full
skymodel Model of sky emission on detector full
waveimg Wavelength image. Vacuum, flexure, and helio-centric corrected standard, full

52 Chapter 3. Data Products

PypeIt Documentation, Release 0.11.1dev

3.1.2 Standard Products

There are four standard types of output products generated by PypeIt. These separate calibrations from spectra and
QA plots. Each type is designated by a unique prefix in the filename:

Output Type Prefix Description
1D Spectra spec1d 1D arrays and meta data associated with extracted 1D spectra
Object info objinfo ASCII table listing several object attributes
2D Spectra spec2d 2D arrays related to sources (e.g. sky-subtracted image)
Calibration MasterFrame Calibration images, fits, meta files, etc.
Reduction N/A Files that guide or describe the reduction
QA qa Quality assurance figures

3.1.3 Reduction Mode

PypeIt can be run in several modes of reduction, which demark the level of sophistication (e.g. quick and dirty vs.
MonteCarlo) and also the amount of output written to disk. See ReductionModes for a full description of these. The
Table below briefly summarizes the standard outputs that are generated by each mode. More detail is given in the
documentation describing each type of output products.

Mode Type Outputs
Quick 1D Spec-

tra
boxcar (counts), meta

Object
info

all

2D Spec-
tra

none

Calibra-
tion

meta

QA S/N
Mini-
mal

1D Spec-
tra

optimal (fluxed), meta

2D Spec-
tra

ivar, skysub, waveimg

Calibra-
tion

meta

QA flexure, S/N, slits, tilts, tracing, wavelength
Full 1D Spec-

tra
boxcar, optimal, meta

2D Spec-
tra

ivar, mask, objmodel, processed, residual, skymodel, skysub, waveimg

Calibra-
tion

meta, bias, illumination image, pixel flat, sensitivity fit and image, slit files, tilts image,
wavelength fits

QA flexure, object profile, S/N, slits, tilts, tracing, wavelength

3.1.4 Compactness

There are two modes for writing the output files which differ in the number of files written.

3.1. Outputs 53

PypeIt Documentation, Release 0.11.1dev

Compact

Write the fewest files possible, generally one per each of the Standard Products. This is the PypeIt default for all
Reduction Mode.

Explode

Write approximately one file per reduction product.

[Describe how to turn this on]

3.1.5 Organization

[Describe directory structure here.]

3.2 PypeIt QA

As part of the standard reduction, PypeIt generates a series of Quality Assurance (QA) files. This documentation
describes the typical outputs, in the typical order that they appear. The basic arrangement is that individual PNG files
are created and then a set of HTML files are generated to organize viewing of the PNGs.

3.2.1 HTML

When the code completes (or crashes out), a set of HTML files are generated in the QA/ folder. There is one
HTML file per MasterFrame set and one HTML file per science exposure. Example names are MF_A_01_aa.html
and J124_J1247-0337_LRISr_2017Mar20T140044.html.

Quick links are provided to allow one to jump between the various files.

3.2.2 Calibration QA

The first QA PNG files generated are related to calibration processing. There is a unique one generated for each setup
and detector and (possibly) calibration set.

Generally, the title describes the type of QA and the sub-title indicates the user who ran PypeIt and the date of the
processing.

Slit Edge QA

The first output is a plot showing the flat image of the given detector. The left/right slit edges are marked with red/cyan
dashed lines. The slit name is labelled in green and the number indicates the position of the slit center on the detector
mapped to the range [0-10000]. Here is an example:

Blaze QA

This page shows the blaze function measured from a flat-field image, and the fit to this function. There should be good
correspondence between the two. Here is an example:

54 Chapter 3. Data Products

PypeIt Documentation, Release 0.11.1dev

3.2. PypeIt QA 55

PypeIt Documentation, Release 0.11.1dev

56 Chapter 3. Data Products

PypeIt Documentation, Release 0.11.1dev

Wavelength Fit QA

This page shows the arc spectrum with labelled arc lines in the left panel and the fit and residuals to the fit in the right
panels. Good solutions should have RMS < 0.1 pixels. Here is an example:

Spectral Tilts QA

There are generally a series of PNG files describing the analysis of the tilts of the arc lines.

Arc Tilt PCA

One page should show fits to the PCA components describing the arcline tilt fits. One hopes for good models to the
data (blue crosses; red crosses indicate lines ignored in the analysis) in the first two panels, and that the values for PC1
are small. Here is an example:

3.2. PypeIt QA 57

PypeIt Documentation, Release 0.11.1dev

Arc Tilt Plots

There are then a series of PNG files showing the arc lines across the detector (blue) and associated fits (red). Here is
an example page:

3.2.3 Exposure QA

For each processed, science exposure there are a series of PNGs generated, per detector and (sometimes) per slit.

58 Chapter 3. Data Products

PypeIt Documentation, Release 0.11.1dev

Object Trace QA

An image of the sky-subtracted slit is displayed. Overlayed are the left/right (red/cyan) edges of the extraction region
for each object. These are also labeled by the object ID value where the 3-digit number is the trace position relative to
the slit, ranging from 0-1000. Here is an example:

Object Profile QA

For all of the objects in a given slit where optimal extraction was performed the spatial profile and the fit are displayed.
The x-axis is in units of pixels. Here is an example:

Flexure QA

If a flexure correction was performed (default), the fit to the correlation lags per object is shown and the adopted shift
is listed. Here is an example:

There is then a plot showing several sky lines for the analysis of a single object (brightest) from the data compared
against an archived sky spectrum. These should coincide well in wavelength. Here is an example:

3.2. PypeIt QA 59

PypeIt Documentation, Release 0.11.1dev

60 Chapter 3. Data Products

PypeIt Documentation, Release 0.11.1dev

3.2. PypeIt QA 61

PypeIt Documentation, Release 0.11.1dev

62 Chapter 3. Data Products

CHAPTER 4

Calibrations

4.1 Calibration Overview

This document gives an overview of the calibration steps of PypeIt. There is additional documentation for several of
the more complex steps.

4.1.1 Sequence of Events

Here is the sequence of events:

Step Products Description
datasec datasec image 2D image describing the detector pixels for analysis

4.1.2 datasec

In this step, PypeIt parses the instrument settings file (or user input) to establish the region on each detector for analysis.
The overscan section is also established and is included in the datasec if one exists.

A 2D image defining the datasec pixels is generated and stored internally (in _datasec).

Standard

The standard approach to defining the datasec is to set these in the instrument settings file. It is necessary to generate
one set per amplifier as each of these may have distinct properties (e.g. readnoise, gain).

Here are the values for Kast blue:

det01 numamplifiers 2 # Number of amplifiers
det01 datasec01 [:,0:1024]
det01 oscansec01 [:,2049:2080]

(continues on next page)

63

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

det01 datasec02 [:,1024:2048]
det01 oscansec02 [:,2080:2111]
det01 gain 1.2,1.2 # Inverse gain (e-/ADU)
det01 ronoise 3.7,3.7 # Read-out noise (e-)

LRIS

The FITS file writing for LRIS is sufficiently complex that the datasec definition (and file loading) is guided by a
custom method: arlris.read_lris()

4.2 Bias Subtraction

4.2.1 Overview

The code can perform bias subtraction using input bias frames or by analyzing and subtracting off an estimate from
the overscan region(s). The default for ARMLSD is to use bias frames and require that several be provided. A future
implementation will combine the two approaches.

4.2.2 Methods

Subtract Bias Frame

This method combines the set of input bias frames and subtracts the resulting MasterBias from all other frames. This
is the default in ARMLSD when bias frames are provided. It can be explicitly enforced by adding:

bias useframe bias

to the PypeIt reduction file.

Subtract Overscan

Analyze the overscan region and subtract a replicated version of the result from the full image. This method is applied
by adding:

bias useframe overscan

to the PypeIt reduction file.

Overscan Algorithms

SavGol, Polynomial

4.3 Slit Tracing

One of the first and most crucial steps of the pipeline is to auto-magically identify the slits (or orders) on a given
detector. This is a challenging task owing to the wide variety in:

64 Chapter 4. Calibrations

PypeIt Documentation, Release 0.11.1dev

• the number of slits/orders,

• the separation between slits/orders (if any)

• the varying brightness of flats across the detector

Developing a single algorithm to handle all of these edge cases (pun intended) is challenging if not impossible. There-
fore, there are a number of user-input parameters that one may need to consider when running PypeIt (see below).

Underlying the effort is the TraceSlits class which can be used to load the Master frame output for tracing (a FITS and
a JSON file).

4.3.1 Algorithm

Here is the flow of the algorithms.

1. A Sobolev S/N image is generated from the trace flat image

2. edge detection: An initial set of edges are derived from the Sobolev according to the trace-slit-threshold.

3. match edges: An algorithm is performed to match edges into slits for the first time.

4. trace (crudely) the slits: Each slit edge is traced with the trace_crude algorithm and snippets of edges are
(hopefully) merged

5. PCA: A PCA analysis is performed of the well-traced edges found thus far. This is then used to rectify the
Sobolev images and search for additional edges.

6. synchronize: Slit edges are synchronized primarily to pick up missing edges

7. trim: Trimming of small slits is performed

4.3.2 Open Issues

1. Bad columns yield fake edges. These should be masked out by the pipeline using the instrument-specific bad
pixel mask.

2. Overlapping slits are notoriously difficult to detect. One may need to add/subtract individual slits on occasion.

4.3.3 Reduction Mode

Longslit

If you have only one slit per detector, you may wish to specify the Number of Slits as 1.

Multislit

Deriving all of the slits in a mask exposure is challenged by overlapping slits, slits that run to the detector edge, bad
columns, etc. Our testing with DEIMOS and LRIS masks is thus far recovering ~95% of the slits.

It is highly recommended that you inspect the warning messages during slit tracing and then pause the code to inspect
the MasterTrace output using the pypeit_chk_edges script.

We now summarize the PypeIt parameters that are occasionally varied to improve slit tracing.

One parameter to consider first is the trace-slit-threshold which sets the minimum S/N ratio in the Sobolev filter image
for an edge to be detected. You may inspect these edges with the pypeit_chk_edges and –show=edgearr. The left
edges in the Sobolev are the white regions in this image and the black regions (negative values) are the right edges.

4.3. Slit Tracing 65

PypeIt Documentation, Release 0.11.1dev

The green/red traces show the left/right edges detected from this image; these are not the final traces. Inspect the
positive/negative values of the edges in the Sobolev image and lower/raise trace-slit-threshold accordingly.

If your spectra span only a modest fraction (~50%) of the detector in the spectral direction, you may need to: (1)
Reduce the value of trace-slit-mask_frac_thresh and maybe also: (2) Modify the range for smashing the Sobolev
image with trace-slit-smash_range.

Add User Slits

The code may be instructed to add slits at user-input locations. The syntax is is a list of lists, with each sub-list having
syntax (all integers): det:y_spec:x_spat0:x_spat1 For example:

[calibrations]
[[slits]]
add_slits = 2:2000:2121:2322,3:2000:1201:1500

The above will add one slit on detector 2 with left/right edge at 2121/2322 at row 2000. The shapes of the slit will be
taken from the ones that are nearest.

See the PypeIt-HOWTO-slits slides for further details.

Remove Slits

The code may be instructed to remove slits at user-input locations. The syntax is a list of lists, with each sub-list
having syntax (all integers): det:y_spec:x_spat For example:

[calibrations]
[[slits]]
rm_slits = 2:2000:2121,3:2000:1500

This will remove any slit on det=2 that contains x_spat=2121 at y_spec=2000 and similarly for the slit on det=3.

See the PypeIt-HOWTO-slits slides for further details.

Echelle

The primary difference currently between multi-slit and echelle is that the latter analyzes the left and right edges
separately during the PCA algorithm.

4.3.4 Scripts

pypeit_chk_edges

PypeIt includes a simple script to show the processed Trace image and the slit/order edges defined by the algorithm.
These are displayed in a Ginga viewer. Here is an example call:

pypeit_chk_edges MF_keck_lris_blue/MasterTrace_A_1_01

If debugging poor performance, you can show other outputs from intermediate steps in the process with the –show
command:

66 Chapter 4. Calibrations

https://tinyurl.com/pypeit-howto-slits
https://tinyurl.com/pypeit-howto-slits

PypeIt Documentation, Release 0.11.1dev

--show=edgeearr # Shows the edges derived early on from the Sobolev image
--show=xset # Shows the edges derived after the mslit_tcrude() method
--show=siglev # Shows the Sobolev S/N image

4.3.5 Trace Slit Settings

The following are settings that the user may consider varying to improve the slit tracing.

Number of Slits

Ironically, one of the more challenging slit configurations to automatically identify is a single slit. In part this is often
because at least one edge of the slit butts against the detecor giving no image gradient. And also because only a small
portion of the detector may be illuminated by this ‘long’ slit.

Therefore, when reducing long slit data, it may be a good idea to explicitly tell PypeIt that there is only 1 slit to be
identified. You can set this using the keyword:

[calibrations]
[[slits]]
number=1

You can also use this variable to specify the number of slits that should be detected. Note, that this feature works best
when you have well-defined and uniformly illuminated slits (usually the case with cross-dispersed data, for example).

Detection Threshold

The detection threshold for identifying slits is set relatively low to err on finding more than fewer slit edges. The
algorithm can be fooled by scattered light and detector defects. One can increase the threshold with the sigdetect
parameter:

[calibrations]
[[slits]]
sigdetect = 30.

Then monitor the number of slits detected by the algorithm.

Presently, we recommend that you err on the conservative side regarding thresholds, i.e. higher values of sigdetect,
unless you have especially faint trace flat frames.

On the flip side, if slit defects (common) are being mistaken as slit edges then increase sigdetect and hope for the best.

Fraction Threshold

In an interemediate step, the mslit_tcrude() method, the edges defined thus far are traced across the detector with
the trace_crude method. A PCA analysis of these is then performed on those edges which spanned at least
mask_frac_thresh of the detector in the spectral direction. The default value is 0.6 which may be too large for some
instruments (e.g. LRISb with the 300 grism). Consider lowering the value, especially if the code raised a warning on
too few edges for the PCA:

[calibrations]
[[slits]]
mask_frac_thresh = 0.45

4.3. Slit Tracing 67

PypeIt Documentation, Release 0.11.1dev

You may also need to adjust the trace-slit-smash_range parameter.

Smash Range

One of the final steps in slit/order definition is to identify edges by smashing a rectified version of the Sobolev image.
The default is to smash the entire image, but if the spectra are primariliy in a subset of the image one should consider
modifying the default parameter. This is frequently the case for low-dispersion data, e.g. LRISb 300 grism spectra
(which has a different default value). Modify it as such:

[calibrations]
[[slits]]
smash_range = 0.5,1.

4.3.6 Slit Profile

DEPRECATED

With relatively short slits (often the case with multiobject or echelle data), the sky background is determined from
relatively few pixels towards the edge of the slit, where the flux from a uniformly illuminated slit tends to roll off. To
correct for this effect, PypeIt models the spatial slit profile of a trace frame (i.e. a flatfield with the same slit length as
the science slit). The relevant set of parameters that determine the fit properties are given by:

reduce slitprofile perform False
reduce flatfield method bspline
reduce flatfield params [n]

where n in the last line should be an integer or floating point number.

The default setting is to not calculate the slit profile. To turn on this functionality, the argument of the first line above
can be set to True. If the calculation is performed, the second line sets the method that should be used to determine
the spatial slit profile.

At this stage, PypeIt only supports the value ‘bspline’, where the knot spacing is set by the third line above. If the
argument of reduce flatfield params is n >= 1, PypeIt will place a knot at every n pixels. Otherwise, if n < 1, PypeIt
will place a knot at every k pixels, where k=n*N and N is the total number of pixels in the spectral direction. The
number of knots in the spatial direction is set automatically by PypeIt, to be twice the number of pixels along the slit.
Thus, the user only has the ability to change the number of knots in the spectral direction (i.e. the blaze function). If
the spatial slit profile is not calculated, the blaze function will still be calculated using the ‘reduce flatfield’ settings
listed above.

4.3.7 Tips on Trace Flat Frames

The slit edges are traced using a “trace” frame. If neighboring slits are very close together, you can use a “pinhole”
frame to trace the slit centroid.

In the current version of PypeIt, pinhole frames are only used for echelle data reduction. Pinhole frames are usually an
exposure of a quartz lamp through a very short (pinhole) slit. Thus, neighboring slit edges of a pinhole frame should
be well separated.

Trace frames, on the other hand, usually have the same slit length as the science frame. In cases where neighboring
slits are very close together, it is necessary to first define the slit centroid using a pinhole frame, and the slit edges are
defined using a trace frame by “expanding” the slits, by giving the following keyword argument:

trace slits expand True

68 Chapter 4. Calibrations

PypeIt Documentation, Release 0.11.1dev

This has been developed for the APF primarily.

4.3.8 For Developers

One of the ways the edge-finding algorithm is fooled is via chip defects, e.g. bad columns. It is therefore valuable to
mask any such known features with the bad pixel mask when one introduces a new instrument (or detector).

4.4 Wavelength Calibration

4.4.1 Basic Algorithms

These notes will describe the algorithms used to perform wavelength calibration in 1D (i.e. down the slit/order) with
PypeIt. The basic steps are:

1. Extract 1D arc spectra down the center of each slit/order

2. Load the parameters guiding wavelength calibration

3. Generate the 1D wavelength fits

The code is guided by the WaveCalib class, partially described by this WaveCalib.ipynb Notebook.

For the primary step (#3), we have developed several algorithms finding it challenging to have one that satisfies all
instruments in all configurations. We now briefly describe each and where they tend to be most effective. Each of
these is used only to identify known arc lines in the spectrum. Fits to the identified lines (vs. pixel) are performed with
the same, iterative algorithm to generate the final wavelength solution.

Holy Grail

This algorithm is based on pattern matching the detected lines with that expected from the lamps observed. It has
worked well for the low dispersion spectrographs and has been used to generate the templates needed for most of the
other algorithms. It has the great positive of requiring limited developer effort once a vetted line-list for the observed
lamps has been generated.

However, we have found this algorithm is not highly robust (e.g. slits fail at ~5-10% rate) and it struggles with high
dispersion data (e.g. ThAr lamps). At this stage, we recommend it be used primarily by the Developers to generate
template spectra.

Reidentify

Following on our success using archived templates with the LowRedux code, we have implemented an improved
version in PypeIt. Each input arc spectrum is cross-correlated against one or more archived spectra, allowing for both
a shift and a stretch.

Archived spectra that yield a high cross-correlation score are used to identify arc lines based on their recorded wave-
length solutions.

This algorithm is optimal for fixed-format spectrographs (e.g. X-Shooter, ESI).

4.4. Wavelength Calibration 69

https://github.com/pypeit/pypeit/blob/master/doc/nb/WaveCalib.ipynb

PypeIt Documentation, Release 0.11.1dev

Full Template

This algorithm is similar to Reidentify with two exceptions: (i) there is only a single template used (occasionally one
per detector for spectra that span across multiple, e.g. DEIMOS); (ii) IDs from the input arc spectrum are generally
performed on snippets of the full input array. The motivation for the latter is to reduce non-linearities that are not well
captured by the shift+stretch analysis of Reidentify.

We recommend implementing this method for multi-slit observations, long-slit observations where wavelengths vary
(e.g. grating tilts). We are likely to implement this for echelle observations (e.g. HIRES).

4.4.2 Common Failure Modes

Most of the failures should only be in MultiSlit mode or if the calibrations for Echelle are considerably different from
expectation.

As regards Multislit, the standard failure modes of the Full Template method that is now preferred are:

1. The lamps used are substantially different from those archived.

2. The slit spans much bluer/redder than the archived template.

In either case, a new template may need to be generated. If you are confident this is the case, raise an Issue.

4.4.3 Possible Items to Modify

FWHM

The arc lines are identified and fitted with ane expected knowledge of their FWHM (future versions should solve for
this). A fiducial value for a standard slit is assume for each instrument but if you are using particularly narrow/wide
slits than you may need to modify:

[calibrations]
[[wavelengths]]
fwhm=X.X

in your PypeIt file.

4.4.4 Line Lists

Without exception, arc line wavelengths are taken from the ‘NIST database <http://physics.nist.gov/PhysRefData‘_,
in vacuum. These data are stored as ASCII tables in the arclines repository. Here are the available lamps:

Lamp Range (A) Last updated
ArI 3000-10000 21 April 2016
CdI 3000-10000 21 April 2016
CuI 3000-10000 13 June 2016
HeI 2900-12000 2 May 2016
HgI 3000-10000 May 2018
KrI 4000-12000 May 2018
NeI 3000-10000 May 2018
XeI 4000-12000 May 2018
ZnI 2900-8000 2 May 2016
ThAr 3000-11000 9 January 2018

70 Chapter 4. Calibrations

PypeIt Documentation, Release 0.11.1dev

In the case of the ThAr list, all of the lines are taken from the NIST database, and are labelled with a ‘MURPHY’ flag
if the line also appears in the list of lines identified by Murphy et al. (2007) MNRAS 378 221

4.4.5 By-Hand Calibration

If the automatic algorithm is failing (heaven forbid; and you should probably raise an Issue on PypeIt if you are sure
it isn’t your fault), you can input a set of pixel, wavelength values as a crutch in your .pypeit setup file. Here is the
recommended approach:

1. Run PypeIt with –debug_arc on. This will force the code to stop inside ararc.py

2. Print the pixel values to the screen

• (Pdb) tcent

3. Plot the arc spectrum.

• (Pdb) plt.plot(yprep)

• (Pdb) plt.show()

4. Compare that spectrum with a known one and ID a few lines. Write down. Better be using vacuum wavelengths

5. Add pixel values and wavelengths to your .pypeit file, e.g.

• arc calibrate IDpixels 872.062,902.7719,1931.0048,2452.620,3365.25658,3887.125

• arc calibrate IDwaves 3248.4769,3274.905,4159.763,4610.656,5402.0634,5854.110

4.4.6 Flexure Correction

By default, the code will calculate a flexure shift based on the extracted sky spectrum (boxcar). See Flexure Correction
for further details.

4.4.7 Wavelength Frame

PypeIt offers several frames of reference that can used for the wavelength scale. The first choice is whether you would
like the data to be calibrated to air or vacuum wavelengths. This option is controlled by the argument:

reduce calibrate wavelength air

where the default value is to calibrate to vacuum. You can also specify ‘pixel’, which will save the pixel values instead
of the wavelength values (i.e. a wavelength calibration will not be performed). The calibration follows the Ciddor
schema (Ciddor 1996, Applied Optics 62, 958).

You can also choose if you want the wavelength scale corrected to the heliocentric (Sun-centered), barycentric (Solar
system barycentre), or topocentric (telescope centered). None is also an option, but this defaults to topocentric. This
option is governed by the command:

reduce calibrate refframe barycentric

where the default value is a heliocentric wavelength scale. More details are provided in heliocorr.

4.4. Wavelength Calibration 71

http://adsabs.harvard.edu/abs/2007MNRAS.378..221M

PypeIt Documentation, Release 0.11.1dev

4.4.8 Developers

Full Template

The preferred method for multi-slit calibration is now called full_template which cross-matches an input sepctrum
against an archived template. The latter must be constructed by a Developer, using the core.wavecal.templates.py
module. The following table summarizes the existing ones (all of which are in the data/arc_lines/reid_arxiv folder):

Instrument Setup Name
keck_deimos 600ZD grating, all lamps keck_deimos_600.fits
keck_deimos 830G grating, all lamps keck_deimos_830G.fits
keck_deimos 1200G grating, all lamps keck_deimos_1200G.fits
keck_lris_blue B300 grism, all lamps keck_lris_blue_300_d680.fits
keck_lris_blue B400 grism, all lamps? keck_lris_blue_400_d560.fits
keck_lris_blue B600 grism, all lamps keck_lris_blue_600_d560.fits
keck_lris_blue B1200 grism, all lamps keck_lris_blue_1200_d460.fits
keck_lris_red R400 grating, all lamps keck_lris_red_400.fits
keck_lris_red R1200/9000 , all lamps keck_lris_red_1200_9000.fits
shane_kast_blue 452_3306 grism, all lamps shane_kast_blue_452.fits
shane_kast_blue 600_4310 grism, all lamps shane_kast_blue_600.fits
shane_kast_blue 830_3460 grism, all lamps shane_kast_blue_830.fits

See the Templates Notebook or the core.wavecal.templates.py module for further details.

One of the key parameters (and the only one modifiable) for full_template is the number of snippets to break the input
spectrum into for cross-matchging. The default is 2 and the concept is to handle non-linearities by simply reducing
the length of the spectrum. For relatively linear dispersers, nsinppet=1 may frequently suffice.

For instruments where the spectrum runs across multiple detectors in the spectral dimension (e.g. DEIMOS), it may be
necessary to generate detector specific templates (ugh). This is especially true if the spectrum is partial on the detector
(e.g. the 830G grating).

4.4.9 Validation

See the iPython Notebook under test_suite for a comparison of the wavelength solution for PypeIt vs. LowRedux.

4.5 Wavelength Tilts

4.5.1 Overview

To construct a wavelength image that assigns a wavelength value to every pixel in the science frame, one must measure
the tilts of the arc lines (or sky lines) across the slits/orders.

This process is organized by the WaveTilts class which is primarily a wrapper to methods in the artracewave.py module.
Here is the code flow:

1. Extract an arc spectrum down the center of each slit/order

2. Loop on slits/orders

i. Trace the arc lines (fweight is the default)

ii. Fit the individual arc lines

72 Chapter 4. Calibrations

PypeIt Documentation, Release 0.11.1dev

iii. 2D Fit to the offset from pixcen

iv. Save

See this WaveTilts Notebook for some examples.

4.5.2 QA

The code will output a residual plot of the 2D fit to offsets. It should be possible to achieve an RMS < 0.05 pixels.

4.5.3 Scripts

pypeit_chk_tilts

This script displays several aspects of the tilts solution on the Arc frame. Here is the usage:

usage: pypeit_chk_tilts [-h] [--slit SLIT] option setup

Display MasterArc image in a previously launched RC Ginga viewer with tilts

positional arguments:
option Item to show [fweight, model, tilts, final_tilts]
setup setup (e.g. A_01_aa)

optional arguments:
-h, --help show this help message and exit
--slit SLIT Slit/Order [0,1,2..] (default: None)

And here is an example or two:

pypeit_chk_tilts fweight A_01_aa --slit 0
pypeit_chk_tilts model A_01_aa --slit 0
pypeit_chk_tilts tilts A_01_aa --slit 0

These will displace in a RC Ginga window.

4.5.4 Settings

IdsOnly

Limit tilt analysis to only the arc lines identified in 1D wavelength solution:

trace slits tilts idsonly True

This is critical when using instrument with a significant number of ghosts (e.g. LRISb).

Threshold

Minimum amplitude of an arc line for analysis. The default is 1000 (counts). You may wish to lower this parameter to
include more lines, especially if you are short on lines near the spectral edges of the slit/order, e.g.:

trace slits tilts trthrsh 400.

We may eventually tune this parameter for the various instruments.

4.5. Wavelength Tilts 73

https://github.com/pypeit/pypeit/blob/master/doc/nb/WaveCalib.ipynb

PypeIt Documentation, Release 0.11.1dev

Order

Order of the function (default is Legendre) that is fit to each arc line across the slit/order. Very long slits will likely
require order=3 or higher, e.g.:

trace slits tilts order 3

The default is 1 which may be raised.

4.6 Flat fielding

4.6.1 Overview

PypeIt corrects pixel-to-pixel variations using input pixelflat frames or by loading a pre-made master pixelflat. The
default approach is to use pixel flat frames and require that several be provided.

4.6.2 Methods

If you are confident that pixel-to-pixel variations do not need to be corrected for your data, you can turn off the flat
fielding correction with the argument:

reduce flatfield perform False

Alternatively, set this argument to ‘True’ (the default option) to perform the correction. To load a predefined file, use
the command:

reduce flatfield useframe filename

where filename is the name of the file to be used for the flatfield correction. Alternatively, this command also accepts
‘pixelflat’ or ‘trace’ in place of ‘filename’. Recall that a trace frame is typically an exposure of a quartz lamp through
the same slit as the science expsoure, and a pixelflat frame is typically an exposure of a quartz lamp through a slit that
is longer than that taken for the science frame.

If you opt to use a set of flat frames that you have taken for the flat field correction, the current implementation
normalizes the combined input frames with a bspline:

reduce flatfield method bspline

Each method takes a set of parameters, which are supplied with the keyword:

reduce flatfield params [20]

bspline

The bspline method takes a single parameter which, if >= 1, corresponds to the spacing between knots in the spectral
direction, in units of pixels. If the supplied parameter value is less than 1, PypeIt assumes that this represents a fraction
of the pixels in the spectral direction, and will use this as the knot spacing. The default value is 0.05.

74 Chapter 4. Calibrations

PypeIt Documentation, Release 0.11.1dev

4.6.3 Blaze information

The blaze functions that are derived from one of the methods listed above are saved by PypeIt. If desired, you can
perform a simple 2D PCA on the blaze models. This step is only recommended (but not necessary) for echelle data
reduction, where the blaze functions of neighbouring slits are quite similar. A 2D PCA will not be performed if the
argument of the following keyword is set to zero:

reduce flatfield 2dpca 0

A number greater than zero will result in a PCA fit to the blaze functions. The argument of this keyword sets the
number of principal components to use when reconstructing the blaze functions.

4.7 Fluxing

4.7.1 Overview

Fluxing is done after the main run of PypeIt using a separate input file modeled after the PypeIt file. This file sets the
main parameters of the run and guides the process. See Example File for a complete example file.

The top of the file sets fluxing parameters. The spectrograph must always be set:

[rdx]
spectrograph = vlt_fors2

See the FluxCalib ParSet documentation for other parameters that guide generation of the sensitivity function or the
fluxing operation.

WARNING: The code only allows for a select set of standards.

Sensitivity Function

If you wish to generate a sensitivity function from an input standard star file, then you need to set std_file and sensfunc:

[fluxcalib]
std_file = spec1d_STD_vlt_fors2_2018Dec04T004939.578.fits
sensfunc = bpm16274_fors2.fits

The former specifies the spec1d spectrum file produced by PypeIt for the standard star. The latter specifies the output
file name, which will be overwritten if need be.

Fluxing

To flux one or more spec1d files, generate a flux read, e.g.:

flux read
spec1d_UnknownFRBHostY_vlt_fors2_2018Dec05T020241.687.fits FRB181112_fors2_1.fits
spec1d_UnknownFRBHostY_vlt_fors2_2018Dec05T021815.356.fits FRB181112_fors2_2.fits
spec1d_UnknownFRBHostY_vlt_fors2_2018Dec05T023349.816.fits FRB181112_fors2_3.fits

flux end

The first entry of each row is the spec1d file to be fluxed and the second provides the output filename. One separates
the two entries by a single space!

4.7. Fluxing 75

PypeIt Documentation, Release 0.11.1dev

4.7.2 Flux Spec Script

It may be preferential to flux the spectra after the main reduction (i.e. run_pypeit). PypeIt provides a script to guide
the process. Here is the usage:

pypeit_flux_spec FRB181112.flux -h
usage: pypeit_flux_spec [-h] [--debug] [--plot] [--par_outfile] flux_file

Parse

positional arguments:
flux_file File to guide fluxing process

optional arguments:
-h, --help show this help message and exit
--debug show debug plots?
--plot Show the sensitivity function?
--par_outfile Output to save the parameters

The parameters used to guide the process are written to par_outfile (default = fluxing.par) and –plot will generate a
simple plot of the sensitivity function.

4.7.3 FluxSpec Class

The guts of the flux algorithms are guided by the FluxSpec class. See the FluxSpec.ipynb Notebook on GitHub (in
doc/nb) for some usage examples, although we recommend that most users use the Flux Spec Script.

4.7.4 Example File

Here is a complete example file:

User-defined fluxing parameters
[rdx]

spectrograph = vlt_fors2
[fluxcalib]

balm_mask_wid = 12.
#std_file = spec1d_STD_vlt_fors2_2018Dec04T004939.578.fits
sensfunc = bpm16274_fors2.fits

flux read
spec1d_UnknownFRBHostY_vlt_fors2_2018Dec05T020241.687.fits FRB181112_fors2_1.fits
spec1d_UnknownFRBHostY_vlt_fors2_2018Dec05T021815.356.fits FRB181112_fors2_2.fits
spec1d_UnknownFRBHostY_vlt_fors2_2018Dec05T023349.816.fits FRB181112_fors2_3.fits

flux end

Note the std_file is commented out to avoid remaking the sensitivity function.

4.7.5 Sensitivity Function

PypeIt uses the CALSPEC calibration database, which can be found at http://stsci.edu/hst/observatory/crds/calspec.
html for flux calibrations, specifically, generating the sensitivity function (see also standards).

The sensitivity function is generated by dividing the standard star’s flux, which is loaded in by PypeIt from CALSPEC,
by the standard star’s counts per second. This is then multiplied to the science object’s counts per second to yield a
fluxed science spectrum.

76 Chapter 4. Calibrations

https://github.com/pypeit/pypeit/blob/master/doc/nb/FluxSpec.ipynb
http://stsci.edu/hst/observatory/crds/calspec.html
http://stsci.edu/hst/observatory/crds/calspec.html

PypeIt Documentation, Release 0.11.1dev

The sensitivity function is written to disk as a YAML file in the MasterFrames folder with prefix MasterSensFunc.
There is only one file per setup (not per detector). If one has a previous file, this can be placed in the MasterFrames
folder to be loaded (one must turn on MasterFrame usage, e.g. with the -m flag on run_pypeit).

4.7.6 Fluxing Output

Science

The resulting fluxed science spectrum, f𝜆, is given in units of 10−17 ergs/s/cm2/Angstrom and is stored in the
‘box_flam’ extension of the extracted 1D spectrum. If an optimal extraction was successful, there also exists an
‘opt_flam’ extension in the 1D spectrum.

Standard

The 1D extracted standard spectrum is also saved as an output of the fluxing routine. The counts and fluxed standard
spectrum are available in the ‘box_counts’ and ‘box_flam’ extensions, respectively. The fluxed spectrum saved here is
the fluxed standard, using the sensitivity function generated from itself (rather than the archived fluxed standard star
loaded from CALSPEC), and can be examined and compared to the expected f𝜆 as a sanity check.

4.7.7 Troubleshooting

Problem with bspline knot

Things sometimes go wrong the fluxing and it commonly has to do with the bspline algorithm. If you reach a stop in
the code with a message that says “Problem with bspline knot” there are a couple things to check:

• There are instances where there isn’t data between the knots. You can change the knot spacing by including the
following in your .pypeit file under the Reduce block:

reduce skysub bspline everyn NUM

where you adjust NUM.

• If your observation of the standard star is taken with a setup that goes beyond the wavelength range of the
version in data/standards/calspec.

• If the wavelength solution is really bad it can manifest as problem in bspline knot. If the issue isn’t the spacing
or wavelength coverage check the QA files to see if there is an issue in the wavelength solution. If this is the
case, check the Wavelength Calibration page for Troubleshooting or open an issue on the GitHub repo.

4.7. Fluxing 77

PypeIt Documentation, Release 0.11.1dev

78 Chapter 4. Calibrations

CHAPTER 5

Instruments

5.1 Instruments

5.1.1 Overview

Below we describe all of the spectrographs that may be reduced by PypeIt. We also provide any suggested tips for
customizing the PypeIt file.

PypeIt Name Telescope Instrument
shane_kast_blue Lick 3m Kast dual spectrometer; blue camera
shane_kast_red Lick 3m Kast dual spectrometer; red camera
shane_kast_red_ret Lick 3m Kast dual spectrometer; red reticon
keck_lris_blue Keck LRIS spectrometer; blue camera
keck_lris_red Keck LRIS spectrometer; red camera
keck_lris_red_longonly Keck LRIS spectrometer; red camera windowed
keck_nirspec_low Keck NIRSPEC spectrometer; low-dispersion
keck_deimos Keck DEIMOS spectrometer
gemini_gnirs Gemini GNIRS spectrometer
wht_isis_blue WHT ISIS spectrometer; blue camera?
vlt_fors2 VLT FORS2 spectrometer; only a few gratings
vlt_xshooter_uvb VLT X-Shooter spectrometer; UVB camera
vlt_xshooter_vis VLT X-Shooter spectrometer; VIS camera
vlt_xshooter_nir VLT X-Shooter spectrometer; NIR camera
tnb_dolores TNG DOLORES (LRS) spectrograph; LR-R

5.1.2 Kast

5.1.3 LRIS

See the Keck LRIS specific notes for more.

79

PypeIt Documentation, Release 0.11.1dev

5.1.4 DEIMOS

See the Keck DEIMOS specific notes for more.

5.1.5 X-Shooter

See the xshooter specific notes for more.

5.2 Keck DEIMOS

5.2.1 Overview

This file summarizes several instrument specific settings that are related to the Keck/DEIMOS spectrograph.

5.2.2 Deviations

Here are the deviations from the default settings for DEIMOS (set in the settings.keck_deimos file):

settings trace slits sigdetect 50.0
settings trace slits number -1
settings trace slits tilts params 1,1,1
settings trace slits tilts method spca
settings trace slits pca params [3,2,1,0]
settings trace slits polyorder 3
settings trace slits sobel mode nearest
settings trace slits fracignore 0.02 # 0.02 removes star boxes of 40pix size or
→˓less (and any real ones too!)
settings bias useframe overscan
settings pixelflat combine method median
settings pixelflat combine reject level [10.0,10.0]

These are tuned to the standard calibration set taken with DEIMOS. Note that the fracignore setting is designed to
remove alignment star boxes from the analysis. If you have real slits which are the same size (or smaller) they too will
be eliminated.

5.3 Keck LRIS

5.3.1 Overview

This file summarizes several instrument specific settings that are related to the Keck/LRIS spectrograph.

5.3.2 Longslit

If reducing data with a longslit, we recommend that you specify that only a single slit is desired, i.e.:

trace slits number 1

See Number of Slits for further details.

80 Chapter 5. Instruments

PypeIt Documentation, Release 0.11.1dev

5.3.3 Taking Calibrations for LRISb

Default Settings

Here are the deviations from the default settings for LRISb:

settings trace dispersion direction 0
settings trace slits tilts method spca
settings trace slits tilts params 1,1,1
settings trace slits pca params [3,2,1,0]
settings trace slits sigdetect 30.0 # Good for Twilight flats; faint dome
→˓flats might fail miserably..

The last setting is fine for a relatively bright frame taken on the twilight sky, but we suspect a faint dome flat on the
blue side will require a lower sigdetect (and is likely to be very challenging overall).

Internal flats, meanwhile, may be too bright and need to be tested.

Pixel Flat

It is recommend to correct for pixel-to-pixel variations using a slitless flat. If you did not take such calibration frames
or cannot process them, you may wish to use an archival. If so, copy the file into your MasterFrame folder (should be
named MF_lris_blue and you may need to create it yourself) and set the following in the _reduce-block of the PypeIt
file:

reduce flatfield useframe MF_lris_blue/PypeIt_LRISb_pixflat_B600_2x2_17sep2009.fits.gz

5.3.4 Taking Calibrations for LRISr

Default Settings

Here are the deviations from the default settings for LRISr:

settings trace slits sigdetect 50.0 # Good for relatively bright dome flats
settings trace slits pca params [3,2,1,0]

Known issues

Multi-slit

The code may identify a ‘ghost’ slit in empty detector real estate if your mask does not fill most of the field. Be
prepared to ignore it.

5.4 Magellan Mage

5.4.1 Overview

This file summarizes several instrument specific settings that are related to Magellan/Mage.

5.4. Magellan Mage 81

PypeIt Documentation, Release 0.11.1dev

5.4.2 Short slits

There are several issues related to the very short slits of Magellan/Mage (34 pixels or 10” unbinned).

Find Objects

To have enough slit to ‘properly’ find objects, we restrict the find_trim_edge parameter, i.e.:

par['scienceimage']['find_trim_edge'] = (4,4) # Slit is too short to trim 5,5
→˓especially with 2x binning

For spatial binning, we recommend you to further reduce this by the binning factor.

82 Chapter 5. Instruments

CHAPTER 6

Object Algorithms

6.1 Object Finding

This document describes how the code identifies objects within the slits/orders.

6.1.1 Overview

Object identification is a challenging process to code, especially to allow for a large dynamic range between bright
continuum sources and faint emission line sources. Our general philosophy has been to err on the faint side, i.e. detect
sources aggressively with the side-effect of including false positives.

6.1.2 Algorithms

Each of the algorithms described below attempt to identify the peak location of objects in the slit and then defines a
left and right edge for each source. The codes also define background regions for sky subtraction.

standard

The standard algorithm performs the following steps:

1. Rectify the sky-subtracted frame

2. Smooth this 2D image

3. Perform sigma clipping (median stat) down the wavelength dimension to further reject CRs. This may eliminate
bright emission lines.

4. Smash the 2D image along the spectral dimension, to get a 1D array that represents the spatial profile of the
exposure.

5. Perform an initial search for objects by fitting a low-order polynomial to the spatial profile and associate objects
with pixels that are deviant with that fit.

83

PypeIt Documentation, Release 0.11.1dev

6. Estimate the scatter in the slit array and then define all 5 sigma, positive excursion as objects (with 3 sigma
edges).

7. Eliminate any objects within a few percent of the slit edge. Parameterized by trace object xedge.

8. Determine edges and background regions for each object.

9. Optional: Restrict to maximum number of input objects, ordered by flux.

nminima

The image is rectified and smashed along the spectral dimension as in the steps above. Then the following steps are
performed:

1. The 1D array is smoothed by a Gaussian kernel of width trace object nsmooth (default=3).

2. Keep all objects satisfying the threshold criterion. The default is to compare against the scatter in the sky
background. One can keep objects relative to the brightest object (NOT YET IMPLEMENTED).

3. Eliminate any objects within a few percent of the slit edge. Parameterized by trace object xedge.

4. By default, the code restricts to a maximum of 8 objects.

5. Determine edges and background regions for each object.

By-hand

6.1.3 Parameters

The following parameters refer to the prefix of trace object and refer to options for finding the object(s) in a slit.

Pa-
rame-
ter

Algo-
rithm

Options Description

find N/A stan-
dard,nminima

Algorithm to use for finding objects

ns-
mooth

nmin-
ima

int; de-
fault=3

Parameter for Gaussian smoothing when the nminima algorithm is used

xedge Any float; de-
fault=0.03

Ignore any objects within xedge of the edge of the slit. One may lower this
value to recover an object very close to the edge.

6.2 Object Tracing

This document describes how the code traces each object found within a slit.

6.2.1 Parameters

The following table describes parameters related to tracing the objects down the slit. These parameters also follow a
prefix of trace object.

84 Chapter 6. Object Algorithms

PypeIt Documentation, Release 0.11.1dev

Parame-
ter

Options Description

order int; default=2 Order of the polynomial function to be used to fit the object trace in
each slit.

function polynomial,legendre, cheby-
shev

Function to be used to trace the object in each

6.3 Coadd 1D Spectra

This document will describe how to combine the 1D spectra from multiple exposures of the same object.

PypeIt currently only offers the coadding of spectra in 1D and must be done outside of the data reduction pipeline, i.e.
PypeIt will not coadd your spectra as part of the data reduction process.

The current defaults use the Optimal extraction and fluxed data.

6.3.1 Coadd 1dspec

The primary script is called pypeit_coadd_1dspec and takes an input YAML file to guide the process. Here is the
usage:

wolverine> pypeit_coadd_1dspec -h
usage: pypeit_coadd_1dspec [-h] [--debug] infile

Script to coadd a set of spec1D files and 1 or more slits and 1 or more
objects. Current defaults use Optimal + Fluxed extraction. [v1.1]

positional arguments:
infile Input file (YAML)

optional arguments:
-h, --help show this help message and exit
--debug Turn debugging on

Turning on debugging will generate a series of diagnostic plots and likely hit as set_trace in the code.

6.3.2 Input File

The information PypeIt’s coadder uses is contained within a .yaml file. At the most basic level, the file must include
the names of the files to be coadded, and a series of dicts, labeled by ‘a’, ‘b’, ‘c’, etc., each of which has a PypeIt
object identifier string (used to ID the object) and the name of an output file. Here is an example case:

'spectrograph': 'shane_kast_blue'
'filenames': ['spec1d_1.fits', 'spec1d_2.fits', 'spec1d_3.fits']
'a':

'object': 'O503-S4701-D01-I0035'
'outfile': 'tmp.hdf5'

The default behavior of the coadder is to use one object identifier string for all the files to be coadded. There are hard
coded tolerance values in PypeIt (10 for the object identifier string and 50 for the slit identifier string) that work to find
the same object across all the specified files. However, if the object changes positions along the slit over the exposures
(e.g., you dithered while observing the object) this might not be the best way to coadd since the object identifier string

6.3. Coadd 1D Spectra 85

PypeIt Documentation, Release 0.11.1dev

could be very different from exposure to exposure. For this case, there is functionality to specifiy an object identifier
string for each specified file. The .yaml file would look like this:

'spectrograph': 'shane_kast_blue'
'filenames': ['spec1d_1.fits', 'spec1d_2.fits', 'spec1d_3.fits']
'a':

'object': ['O290-S1592-D02-I0002', 'O457-S1592-D02-I0003
', 'O626-S1592-D02-I0004']
'outfile': 'tmp.hdf5'

There is only one object to be coadded in each data frame. The ‘object’ tag is a object identifier string containing the
object’s relative location in the slit (here, 503 with 1000 the right edge), the slit ID which is relative on the detector
(4701), the detector number (01), and the science index (0035), in one of the files.

One can also set local parameters for coadding. Common keywords for coadding algorithms are listed below (More
Keywords).

The list of object identifiers in a given spec1d file can be output with the pypeit_show_1dspec script, e.g.:

pypeit_show_1dspec filename.fits --list

These can also be recovered from the object info files in the Science/folder (one per exposure).

The coadding algorithm will attempt to match this object identifier to those in each data file, within some tolerance on
object and slit position. ‘outfile’ is the filename of the coadded spectrum produced.

6.3.3 Spectral Parameters

By default, the algorithm will combine the optimally extracted, fluxed spectra from each exposure. You may modify
the extraction method, e.g.:

'extract': 'box'

and/or specify whether the spectrum is fluxed:

'flux': False

Note that these parameters must be outside of the ‘a’, ‘b’, ‘c’, etc. dicts or else they will have no effect.

6.3.4 Flux Scaling

Each entry can include a scale dict that will be used to scale the flux of the coadded spectrum using an input filter and
magnitude. Here is an example:

'a':
'object': ['SPAT0119-SLIT0000-DET01', 'SPAT0159-SLIT0000-DET01', 'SPAT0079-

→˓SLIT0000-DET01']
'outfile': 'FRB181112_fors2.fits'
'scale': {'filter': 'DES_r', 'mag': 21.73, 'mag_type': 'AB', 'masks': [[0., 6000.

→˓]]}

The call here will convolve the coadded spectrum with the DES r-band filter, and then scale the flux to give an AB
magnitude of 21.73. Furthermore, the spectral wavelengths less than 6000 Ang are masked in the analysis.

86 Chapter 6. Object Algorithms

PypeIt Documentation, Release 0.11.1dev

Filters

Here is the set of ingested filters:

DES_g, DES_r, DES_i DES_z, DES_Y

6.3.5 Cosmic Ray Cleaning

By default, the script will attempt to identify additional, lingering cosmic rays in the spectrum. The algorithm em-
ployed depends on the number of input spectra. Note that most of the challenges associated with the coadding are
related to CR identification, especially for cases of only two input spectra.

The main parameters driving the CR algorithms are described in Cosmic Ray.

Two Spectra

While it is possible to clean a significant fraction of any lingering CR’s given 2 exposures, results are mixed and depend
on the S/N ratio of the data and the presence of strong emission lines. We have now implemented three approaches,
described below.

The default is bspline which is likely best for low S/N data. The algorithm may be modified with the cr_two_alg
parameter.

diff

This algorithm compares the difference between the spectra and clips those that are cr_nsig away from the standard
deviation.

ratio

Similar to diff above, but the ratio is also compared. This may be the best algorithm for high S/N data with strong
emission lines.

bspline

A b-spline is fit to all of the pixels of the 2 spectra. By default, a breakpoint spacing of 6 pixels is used. Very narrow
and bright emission lines may be rejected with this spacing and a lower value should be used (see Cosmic Ray). Of
course, lowering the spacing will increase the likelihood of including cosmic rays. This algorithm is best suited for
lower S/N spectra.

Three+ Spectra

For three or more spectra, the algorithm derives a median spectrum from the data and identifies cosmic rays or other
deviant pixels from large deviations off the median.

6.3. Coadd 1D Spectra 87

PypeIt Documentation, Release 0.11.1dev

6.3.6 Additional Coadding Parameters

You can adjust the default methods by which PypeIt coadds spectra by adding a dict named ‘global’ or a ‘local’ dict
in the object block:

'spectrograph': 'shane_kast_blue'
'filenames': ['spec1d_1.fits', 'spec1d_2.fits', 'spec1d_3.fits']
'global':

'wave_grid_method': 'velocity'
'a':

'object': 'O503-S4701-D01-I0035'
'outfile': 'tmp.hdf5'
'local':

'otol': 10

The adjustable parameters and options are:

Wavelength Rebinning

Parame-
ter

Option Description

wave_grid_methoddefault:
concate-
nate

create a new wavelength grid onto which multiple exposures are rebinned after first
concatenating all wavelength grids

– velocity create a new wavelength grid of constant km/s. Default is to use the median velocity
width of the input spectrum pixels but a value ‘v_pix’ can be provided

– pixel create a new wavelength grid of constant Angstrom specified by the input parameter
‘A_pix’

Flux Scaling

Pa-
ram-
e-
ter

Op-
tion

Description

scale_methodde-
fault:
auto

scale the flux arrays based on the root mean square value (RMS) of the S/N^2 value for all spectra; if
this RMS value is less than the minimum median scale value, no scaling is applied. If the RMS value
is greater than the minimum but smaller than the maximum median scale value, the applied method
is the median, as described below

– hand scale the flux arrays using values specified by the user in the input parameter ‘hand_scale’. Must
have one value per spectrum

– me-
dian

scale the flux arrays by the median flux value of each spectra

88 Chapter 6. Object Algorithms

PypeIt Documentation, Release 0.11.1dev

Cosmic Ray

Pa-
rame-
ter

Option Description

cr_everynint; de-
fault=6

For CR cleaning of 2 spectra, this sets the spacing of the b-spline break points. Use a lower
number to avoid clipping narrow emission/absorption lines, e.g. 4

cr_nsig float; de-
fault=7.

Number of sigma which defines a CR

cr_two_algstr; de-
fault=bspline

Algorithm to adopt for cleaning only 2 spectra

More Keywords

Here are other keywords that one may wish to set for individual objects:

Keyword Method Type Description
otol arspecobj.mtch_obj_to_objects() int Tolerance for matching object ID number

6.3.7 Running the Coadd Code

Once you have this .yaml file set up, you can coadd your 1d spectra by running the command:

pypeit_coadd_1dspec name_of_yaml_file.yaml

The coadder will also produce a quality assurance (QA) file named ‘root_of_outfile.pdf’. In the left panel, the QA
shows the chi- squared residuals of the coadded spectrum, and in the right panel, the coadded spectrum (in black) is
plotted over the original spectra.

6.3. Coadd 1D Spectra 89

PypeIt Documentation, Release 0.11.1dev

90 Chapter 6. Object Algorithms

CHAPTER 7

Documentation

7.1 Flexure Correction

This document will describe how a flexure correction is performed for each 1D spectrum extracted in PypeIt.

7.1.1 Overview

By default, the code will calculate a flexure shift based on the extracted sky spectrum (boxcar). A cross-correlation
between this sky spectrum and an archived spectrum is performed to calculate a single, pixel shift. This is then imposed
on the wavelength solution with simple linear interpolation.

The general approach is to compare the sky model from the observation with an archived sky model. Generally, by
default, the Paranal sky spectrum is used, as derived from the SDSS codes. The default is different for Kast blue and
LRIS blue where sky_kastb_600.fits and sky_LRISb_600.fits are respectively used (see Alternate sky models for all
sky models).

7.1.2 Algorithm

The basic algorithm may be summarized as follows:

1. Identify the overlapping wavelength range between data and archived sky.

2. Rebin the archived sky spectrum onto the overlapping wavelength range.

3. Smooth the sky spectrum to the resolution of the data, if the archive has higher spectral resolution (preferred).
4. Normalize each spectrum to unit average sky counts 5. Subtract a bspline continuum from each 6. Perform a
cross-correlation 7. Fit the cross-correlation with a parabola to find center 8. Apply shift

7.1.3 Usage

By default in ARMLSD, a flexure correction is performed on the boxcar extraction of the sky. This may be disabled
by the following setting in the .pypeit file:

91

PypeIt Documentation, Release 0.11.1dev

reduce flexure spectrum None

One can alternatively use the optimal extraction (if it is performed) with:

reduce flexure spectrum optimal

By default, the maximum shift allowed in pixels is 20. If you suspect a higher shift is required (e.g. results are poor),
you may increase the default (e.g. to 50 pixels):

reduce flexure maxshift 50

7.1.4 Alternate sky models

You may find that the default sky models are not the best suited for your data.There is a script that allows the user to
plot the extracted sky spectrum for their data against any of the sky models in the PypeIt archive. To use this script:

pypeit_compare_sky <Name of 1D spectrum> <Name of sky model>

As noted above, the Paranal sky model is the default reference. Presently, we are finding that the sky spectrum at
Mauna Kea (measured with LRIS) is sufficiently variable and dark that a robust solution is challenging. Fair results
are achieved by using the instrument-specific sky spectra in the LowRedux package. The best practice currently is to
use the one that best matches as an optional parameter

You can use a different sky model than the default by placing the following line under the ‘’Reduce” block in your
.pypeit file:

reduce flexure spectrum <Name of sky model>

The models supplied with PypeIt are,

7.1.5 Other

An alternate algorithm (activated with: reduce flexure spec slit_cen) measures the flexure from a sky spectrum ex-
tracted down the center of the slit. This is then imposed on the wavelength image so that any extractions that follow
have a flexure correction already applied. Thus far, this algorithm has given poorer results than the default.

7.2 Frame Type

7.2.1 Overview

Every raw data file ingested by PypeIt is automatically assigned one or more frametype values. This is to separate
calibration files, science frames, etc. The assignments are guided by criteria given in the default settings file for
each spectrograph (e.g. setttings.kast_blue). One should not modify the default files but if you have a suggestion for
improvement consult with the PypeIt authors.

7.2.2 Definitions

Here are the frametype values allowed and adopted in PypeIt:

92 Chapter 7. Documentation

PypeIt Documentation, Release 0.11.1dev

Fram-
e-
type

Description

arc Spectrum of one or more calibration arc lamps
bias Bias frame; typically a 0s exposure with the shutter closed
dark Dark frame; typically a >0s exposure to assess dark current (shutter closed)
pin-
hole

Spectrum taken through a pinhole slit (i.e. a very short slit length), and is used to define the centre if a slit
(currently, this frame is only used for echelle data reduction). Often this is an exposure using a flat lamp,
but one can in principle use a standard star frame too (or a science frame if the spectrum is uniform).

pix-
elflat

Spectrum taken to correct for pixel-to-pixel detector variations Often an exposure using a flat lamp, but for
observations in the very blue, this may be on-sky

sci-
ence

Spectrum of one or more science targets

stan-
dard

Spectrum of spectrophotometric standard star PypeIt includes a list of pre-defined standards

trace Spectrum taken to define the slit edges and correct for illumination variations across the slit. Often this is
an exposure using a flat lamp, but for observations in the very blue, this may be on-sky. The slit length of a
trace frame should be the same as the science slit.

un-
known

File could not be automatically identified by PypeIt

It is possible, and for flats common, that a frame can be assigned more than one frametype. .. _modify_frametype:

7.2.3 Auto-typing

PypeIt will, be default, attempt to auto identify the image type based on Header information. For each instrument,
there are hard-coded conditions in the settings.instrument file that guide the process. Here are the conditions for a
trace frame with the Shane Kast blue camera:

trace check condition1
→˓lampstat01=on|lampstat02=on|lampstat03=on|lampstat04=on|lampstat05=on
trace check condition2 exptime>0 # Required for bias

The syntax uses “|” and “&” for logic and the strings refer to short-hand strings that were taken from the FITS header.
It is unlikely that anyone other than a developer will wish to modify any of these conditions.

Regarding science vs. standard star typing (perhaps the most challening aspect), the code takes any source that satisfies
the standard conditions to be a standard if it lies with 20arcmin of the PypeIt approved list of standards.

A file that satisfies all conditions of being a bias frame yet has an exposure time exceeding the minimum value for the
detector is typed as a dark.

7.2.4 Modifying a frametype

data block

If your PypeIt reduction file includes the file-by-file listing of frames to analyze, you can edit the frametype directly in
the appropriate column. The values in the .pypeit file will over-ride any assessed by the code. This is the recommend
approach for standard users.

7.2. Frame Type 93

PypeIt Documentation, Release 0.11.1dev

spect block

One can specify one or more frametype’s for any file in the .pypeit file. Include one or more lines in the Spect block
with syntax set frametype filename, e.g.:

set pixelflat b150910_2051.fits.gz

This will over-ride the automatic assignment by PypeIt.

7.3 Instrument Settings

This document will detail aspects of the instrument settings files used in PypeIt.

These are mainly notes for the lead developers.

7.3.1 Generating a new settings file

Here is a quick cookbook of the steps involved:

• Update Mosaic properties (e.g. lon, lat)

• Update Detector properties * RN, GAIN are hard-coded to match detector

• Update checks (note: white spaces are removed in this check) * CCD name * You must check NAXIS is 2 in
“checks to perform”.

• Update Keyword identifiers

Examine the base set of keywords in the data/settings/settings.basespect file and update for the instrument as necessary.
Here are some of the standard ones:

keyword target 01.OBJECT # Header keyword for the name given by the
→˓observer to a given frame
keyword idname 01.OBSTYPE # The keyword that identifies the frame type
→˓(i.e. bias, flat, etc.)
keyword time 01.MJD-OBS # The time stamp of the observation (i.e.
→˓decimal MJD)
keyword date 01.DATE-OBS # The date of the observation (in the format
→˓YYYY-MM-DD or YYYY-MM-DDTHH:MM:SS.SS)
keyword equinox None # The equinox to use
keyword ra 01.RA # Right Ascension of the target
keyword dec 01.DEC # Declination of the target
keyword airmass 01.AIRMASS # Airmass at start of observation
keyword naxis0 01.NAXIS2 # Number of pixels along the zeroth axis
keyword naxis1 01.NAXIS1 # Number of pixels along the first axis
keyword exptime 01.EXPTIME # Exposure time keyword

• Update FITS properties

– timeunit refers to the format of the time KEYWORD (e.g. mjd)

– We should give a few examples here

• Fiddle with rules for Image type ID. Below are some helpful guidelines

– Again, check the settings.basespect file first

– Common check or match rules to update include

94 Chapter 7. Documentation

PypeIt Documentation, Release 0.11.1dev

* arc match decker any – One frequently uses a narrow slit for arcs

* xxx match dispangle |<=## – Add if your disperser has a variable angle

– If a keyword is specified in science/pixflat/blzflat/trace/bias/arc frames it must also appear in the Keyword
identifiers list.

– If a keyword value contains only some interesting value, you can split the keyword value using the ‘%,’
notation. For example, suppose you have the string 10:50:23.45, and you’re interested in the 50 for a match
condition, you would use ‘%’ to indicate you want to split the keyword value, ‘:’ indicates the delimiter
text, ‘1’ indicates you’re interested in the 1st argument (0-indexed), ‘<60’ is an example criteria. Each of
these should be specified in this order, separated by commas, so the final string would be: %,:,1,<60 If you
want to split on multiple delimiters, separate them with a logical or operator. For example, if you want to
split a string at the characters ‘:’ and ‘.’, you would use the expression %,:|.,1,<60

– If the text ‘|’ appears in the match condition, the absolute value will be taken. For example ‘|<=0.05’
means that a given keyword’s value for a calibration frame must be within 0.05 of a science frame’s value,
in order to be matched.

– If a keyword’s value contains spaces, replace all spaces with one underscore.

– If the header contains two keyword’s of the same name, only the value of the first one will be recognised.

• Run

• Add arc solution * set debug[‘arc’] = True in run_pypeit

• Add extinction file if a new observatory * Add file in data/extinction * Edit README

• Add test suite

7.4 Internals

7.4.1 Overview

This file contains notes related to the internal workings of PypeIt.

7.4.2 Objects

filesort

This dict whose keys are the various Frame Type used in PypeIt and the items are arrays of the indices of the frames
with that type.

Generated by arsort.sort_data()

setup_dict

This highly nested dict organizes the various setups used in the input set of data files. The top-level keys, which define
the setup, are simple labels: A, B, C, . . .

The next set of keys are:

• ‘–’: which holds a dict defining properties of the setup (e.g. dichroic)

• ‘01’: a dict holding detector specific info (e.g. binning)

• ‘aa’, ‘ab’, ‘ac’, etc: are dict’s containing lists of filenames as a function of frame type

7.4. Internals 95

PypeIt Documentation, Release 0.11.1dev

Here is an example (as output to the .setups file):

A:
--:
dichroic: d55
disperser: {angle: None, name: 600/4310}
slit: {decker: 0.5 arcsec, slitlen: None, slitwid: None}

'01': {binning: None, det: 1, namp: 2}

Usually generated by arsetup.instr_setup()

setup_ID

The setup_ID is then commbines the keys of the setup_dict, e.g. A_01_aa

96 Chapter 7. Documentation

CHAPTER 8

For Developers

8.1 PypeIt scripts

PypeIt is packaged with several scripts that should have been installed directly into your path (e.g. ~/anaconda/bin).

8.1.1 Pipeline Scripts

pypeit_setup

This setups files for data reduction. See setup for details

run_pypeit

This is the main executable for PypeIt. See Running PypeIt for details.

8.1.2 Inspecting Data

The following scripts are inspecting the data products produced by PypeIt.

pypeit_show_1dspec

Wrapper around the linetools XSpecGUI. Grabs a single 1D spectrum from the PypeIt spec1d output and runs:

unix> pypeit_show_1dspec -h
usage: pypeit_show_1dspec [-h] [--list] [--exten EXTEN] [--extract EXTRACT] [--obj
→˓OBJ] file

Parse

(continues on next page)

97

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

positional arguments:
file Spectral file

optional arguments:
-h, --help show this help message and exit
--list List the extensions only?
--exten EXTEN FITS extension
--obj OBJ Object name in lieu of extension, e.g. O424-S1466-D02-I0013
--extract EXTRACT Extraction method. Default is boxcar. ['box', 'opt']

pypeit_show_2dspec

This script displays the sky-subtracted 2D image for a single detector in a Ginga RC viewer. It also overlays the slits
and any objects extracted. It should be called from the reduction directory, i.e. above the Science folder where the
spec2d image is located. Here is the usage:

unix> pypeit_show_2dspec -h
usage: pypeit_show_2dspec [-h] [--list] [--det DET] file

Display spec2d image in a Ginga viewer

positional arguments:
file PypeIt spec2d file

optional arguments:
-h, --help show this help message and exit
--list List the extensions only? (default: False)
--det DET Detector (default: 1)

The script can be called multiple times to load multiple detectors into one Ginga viewer.

pypeit_view_fits

This is a wrapper to the Ginga image viewer. It is a bit of a kludge in that it writes a dummy tmp.fits file to the
harddrive and sends that into Ginga. The dummy file is deleted afterwards.:

unix> pyp_view_fits -h
usage: pyp_view_fits [-h] [--list] [--raw_lris] [--exten EXTEN] file

positional arguments:
file FITS file

optional arguments:
-h, --help show this help message and exit
--list List the extensions only? (default: False)
--raw_lris
--exten EXTEN FITS extension (default: None)

8.1.3 Data Processing Scripts

pypeit_coadd_1dspec

See Coadd 1D Spectra for further details.

98 Chapter 8. For Developers

PypeIt Documentation, Release 0.11.1dev

8.1.4 Calibration Scripts

pypeit_arcid_plot

Generate a PDF plot from a MasterFrame_WaveCalib.json file. This may be useful to ID lines in other data.:

unix> pypeit_arcid_plot -h
usage: pypeit_arcid_plot [-h] wave_soln title outfile

positional arguments:
wave_soln MasterWaveSoln file [JSON]
title Title for the plot
outfile Output PDF file

optional arguments:
-h, --help show this help message and exit

pypeit_lowrdx_pixflat

Convert a LowRedux pixel flat into a PypeIt ready file:

unix> pypeit_lowrdx_pixflat -h
usage: pypeit_lowrdx_pixflat [-h] lowrdx_file new_file

positional arguments:
lowrdx_file LowRedux Pixel Flat FITS file
new_file PypeIt FITS file

optional arguments:
-h, --help show this help message and exit

8.2 Code Flow

8.2.1 Overview

8.2.2 Setup

Flow

Below is the code flow for the pypeit_setup script. The following are nearly all function names or object methods. The
module name is typically the first item, e.g. arparse.init is a method in arparse.py. Here goes:

pypeit_setup
| pyputils.make_pypeit_file(pypeit_file, spectrograph, dfnames)
| run_pypeit.parser(options)
| pypeit.PypeIt(args)
| | load_input(pypeit_file)
| | | ++ generates pyp_dict
| | arparse.get_argflag_class()
| | | ++ generates argf Class
| | argf.init_param()
| | plines = argf.load_lines(parlines)

(continues on next page)

8.2. Code Flow 99

PypeIt Documentation, Release 0.11.1dev

(continued from previous page)

| | argf.set_paramlist(plines)
| | arparse.get_spect_class()
| | | ++ generates spect Class
| | spect.load_file(base=True) # default
| | spect.set_paramlist(lines)
| | spect.load_file() # instrument specific
| | spect.set_paramlist(lines)
| | spect.set_paramlist(plines) # using pyp_dict
| | spect.load_lines(spclines) # command line
| | argf.save()
| | spect.save()
| | arparse.init(argf, spect) # Saved into settings.
| | # fitsdict created
| | fitsdict = arload.load_headers(datlines)
| | | # Checks on FITS files
| | | settings.spect['check'][ch]
| | # Flip dispersion direction (if needed)
| ARMLSD # This is formally below PypeIt, but I want to reduce the indentation
→˓here
| | armbase.SetupScience(fitsdict)
| | | filesort = arsort.sort_data(fitsdict)
| | | | find_standard_file()
| | | | ++ Generates filesort dict
| | | arsort.match_science(fitsdict, filesort)
| | | | ++ Written to settings.spect[ftag]['index']
| | | arsciexp.ScienceExposure(i, fitsdict)
| | | | ++ Generates sciexp list of ScienceExposure objects
| | | ++ setup_dict generated
| | | arsort.instr_setup(sciexp, kk+1, fitsdict, setup_dict)
| | | | ++ Generates setupIDs
| | | ++ group_dict generated
| | | arsort.write_sorted(group_dict, setup_dict)
| | | arsort.write_setup(setup_dict)

Items

Items created and carried around:

filesort
fitsdict
settings.spect
settings.argf
setup_dict
group_dict
sciexp

8.3 New Spectrograph

Here are notes on how to build a new spectrograph from scratch or to add a new mode.

100 Chapter 8. For Developers

PypeIt Documentation, Release 0.11.1dev

8.3.1 Entirely New

1. Build a new name_of_spectrograph.py file in pypeit.spectrograph

2. Fuss with the Detector object; one per detector - Set datasec, oscansec in the raw frame, i.e. as viewed on Ginga
- Or generate a custom reader if these are variable

3. Set custom parameters

Near-IR

If this is a near-IR instrument, you may wish to turn off overscan subtraction. See Gemini_GNIRS for an example.

8.4 pypeit package

8.4.1 Subpackages

pypeit.core package

Subpackages

pypeit.core.wavecal package

Submodules

pypeit.core.wavecal.autoid module

pypeit.core.wavecal.defs module

pypeit.core.wavecal.fitting module

pypeit.core.wavecal.kdtree_generator module

pypeit.core.wavecal.patterns module

pypeit.core.wavecal.templates module

pypeit.core.wavecal.waveio module

pypeit.core.wavecal.wvutils module

Module contents

Submodules

pypeit.core.arc module

8.4. pypeit package 101

PypeIt Documentation, Release 0.11.1dev

pypeit.core.coadd module

pypeit.core.coadd2d module

pypeit.core.combine module

pypeit.core.extract module

pypeit.core.flat module

pypeit.core.flux module

pypeit.core.framematch module

pypeit.core.load module

pypeit.core.parse module

pypeit.core.pca module

pypeit.core.pixels module

pypeit.core.plot module

pypeit.core.procimg module

pypeit.core.pydl module

pypeit.core.qa module

pypeit.core.save module

pypeit.core.skysub module

pypeit.core.trace_slits module

pypeit.core.tracewave module

pypeit.core.wave module

Module contents

pypeit.images package

Submodules

102 Chapter 8. For Developers

PypeIt Documentation, Release 0.11.1dev

pypeit.images.calibrationimage module

pypeit.images.maskimage module

pypeit.images.processrawimage module

pypeit.images.pypeitimage module

pypeit.images.scienceimage module

Module contents

pypeit.par package

Submodules

pypeit.par.parset module

pypeit.par.pypeitpar module

pypeit.par.util module

Module contents

pypeit.scripts package

Submodules

pypeit.scripts.arcid_plot module

pypeit.scripts.chk_edges module

pypeit.scripts.chk_tilts module

pypeit.scripts.coadd_1dspec module

pypeit.scripts.coadd_2dspec module

pypeit.scripts.flux_spec module

pypeit.scripts.lowrdx_pixflat module

pypeit.scripts.lowrdx_skyspec module

pypeit.scripts.qa_html module

8.4. pypeit package 103

PypeIt Documentation, Release 0.11.1dev

pypeit.scripts.run_pypeit module

pypeit.scripts.setup module

pypeit.scripts.show_1dspec module

pypeit.scripts.show_2dspec module

pypeit.scripts.view_fits module

Module contents

pypeit.spectrographs package

Submodules

pypeit.spectrographs.gemini_gmos module

pypeit.spectrographs.gemini_gnirs module

pypeit.spectrographs.keck_deimos module

pypeit.spectrographs.keck_hires module

pypeit.spectrographs.keck_lris module

pypeit.spectrographs.keck_nires module

pypeit.spectrographs.keck_nirspec module

pypeit.spectrographs.lbt_mods module

pypeit.spectrographs.magellan_fire module

pypeit.spectrographs.magellan_mage module

pypeit.spectrographs.mmt_binospec module

pypeit.spectrographs.opticalmodel module

pypeit.spectrographs.shane_kast module

pypeit.spectrographs.slitmask module

pypeit.spectrographs.spectrograph module

104 Chapter 8. For Developers

PypeIt Documentation, Release 0.11.1dev

pypeit.spectrographs.tng_dolores module

pypeit.spectrographs.util module

pypeit.spectrographs.vlt_fors module

pypeit.spectrographs.vlt_xshooter module

pypeit.spectrographs.wht_isis module

Module contents

8.4.2 Submodules

pypeit.arcimage module

pypeit.biasframe module

pypeit.bitmask module

pypeit.calibrations module

pypeit.check_requirements module

pypeit.debugger module

pypeit.flatfield module

pypeit.fluxspec module

pypeit.ginga module

pypeit.io module

pypeit.masterframe module

pypeit.metadata module

pypeit.pypeit module

pypeit.pypeitsetup module

pypeit.pypmsgs module

pypeit.reduce module

pypeit.setup_package module

pypeit.specobjs module

8.4. pypeit package 105

PypeIt Documentation, Release 0.11.1dev

pypeit.telescopes module

pypeit.traceimage module

pypeit.traceslits module

pypeit.utils module

pypeit.wavecalib module

pypeit.waveimage module

pypeit.wavemodel module

pypeit.wavetilts module

8.4.3 Module contents

106 Chapter 8. For Developers

CHAPTER 9

Contents

9.1 pypeit package

9.1.1 Subpackages

pypeit.core package

Submodules

pypeit.core.combine module

pypeit.core.extract module

pypeit.core.flat module

pypeit.core.fsort module

pypeit.core.load module

pypeit.core.pca module

pypeit.core.plot module

pypeit.core.pydl module

pypeit.core.trace_slits module

107

PypeIt Documentation, Release 0.11.1dev

Module contents

pypeit.scripts package

Submodules

pypeit.scripts.chk_edges module

pypeit.scripts.coadd_1dspec module

pypeit.scripts.qa_html module

pypeit.scripts.run_pypeit module

Module contents

pypeit.spectrographs package

Submodules

pypeit.spectrographs.keck_nires module

pypeit.spectrographs.spectrograph module

pypeit.spectrographs.util module

Module contents

9.1.2 Submodules

pypeit.bpmimage module

pypeit.filter module

pypeit.flatfield module

pypeit.fluxspec module

pypeit.masterframe module

pypeit.scienceimage module

pypeit.traceslits module

pypeit.wavecalib module

108 Chapter 9. Contents

PypeIt Documentation, Release 0.11.1dev

pypeit.waveimage module

9.1.3 Module contents

9.1. pypeit package 109

PypeIt Documentation, Release 0.11.1dev

110 Chapter 9. Contents

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

111

PypeIt Documentation, Release 0.11.1dev

112 Chapter 10. Indices and tables

Index

F
Frame_Type, 92

S
spec1d, 51
spec2d, 52

W
wave_calib, 69
wave_tilts, 72

113

	Getting Started
	Running PypeIt
	Data Products
	Calibrations
	Instruments
	Object Algorithms
	Documentation
	For Developers
	Contents
	Indices and tables
	Index

